import os import gradio as gr from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.chains import ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory from langchain.prompts import PromptTemplate class AdvancedPdfChatbot: def __init__(self, openai_api_key): os.environ["OPENAI_API_KEY"] = openai_api_key self.embeddings = OpenAIEmbeddings() self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) self.llm = ChatOpenAI(temperature=0, model_name='gpt-4') self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) self.db = None self.chain = None self.template = """ You are a study partner assistant helping students analyze PDF documents. Answer the question based only on the most recent provided resources. Provide the most relevant and concise answer possible. Give a structured response in parts when needed according to complexity of the question and details needed, have headlines or bullet points only when necessary Context: {context} Question: {question} Answer: """ self.qa_prompt = PromptTemplate( template=self.template, input_variables=["context", "question"] ) def load_and_process_pdf(self, pdf_path): loader = PyPDFLoader(pdf_path) documents = loader.load() texts = self.text_splitter.split_documents(documents) self.db = FAISS.from_documents(texts, self.embeddings) self.chain = ConversationalRetrievalChain.from_llm( llm=self.llm, retriever=self.db.as_retriever(), memory=self.memory, combine_docs_chain_kwargs={"prompt": self.qa_prompt} ) def chat(self, query): if not self.chain: return "Please upload a PDF first." result = self.chain({"question": query}) return result['answer'] def clear_memory(self): self.memory.clear() # Gradio interface setup remains mostly the same pdf_chatbot = AdvancedPdfChatbot(os.environ.get("OPENAI_API_KEY")) def upload_pdf(pdf_file): if pdf_file is None: return "Please upload a PDF file." file_path = pdf_file.name if hasattr(pdf_file, 'name') else pdf_file try: pdf_chatbot.load_and_process_pdf(file_path) return f"PDF processed successfully: {file_path}" except Exception as e: return f"Error processing PDF: {str(e)}" def respond(message, history): if not message: return "", history try: bot_message = pdf_chatbot.chat(message) history.append((message, bot_message)) return "", history except Exception as e: return f"Error: {str(e)}", history def clear_chatbot(): pdf_chatbot.clear_memory() return [] # Gradio interface with gr.Blocks() as demo: gr.Markdown("# PDF Chatbot") with gr.Row(): pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"]) upload_button = gr.Button("Process PDF") upload_status = gr.Textbox(label="Upload Status") upload_button.click(upload_pdf, inputs=[pdf_upload], outputs=[upload_status]) chatbot_interface = gr.Chatbot() msg = gr.Textbox() msg.submit(respond, inputs=[msg, chatbot_interface], outputs=[msg, chatbot_interface]) if __name__ == "__main__": demo.launch()