File size: 6,008 Bytes
d8c3a88 d2e3c7f 4277202 d2e3c7f 6c5c0ad 6a6fbcd d2e3c7f d43bb1b 4277202 633ac28 6a6fbcd 1e82c8e 6a6fbcd cd5ae07 579fd0d 6a6fbcd 889981c 6a6fbcd 4277202 6a6fbcd d2e3c7f 1e82c8e d2e3c7f 1e82c8e 355b657 d2e3c7f 6a6fbcd 3f31c68 ccff99d 3f31c68 ccff99d 579fd0d 6a6fbcd 3aa1446 7e2233e 579fd0d ccff99d 5e8e8f0 f8d8d78 d2e3c7f f74eb2e 873a6e6 ccff99d 6a6fbcd b840efb ccff99d b840efb a261843 f8d8d78 d2e3c7f ccff99d d2e3c7f ccff99d 6a6fbcd d2e3c7f 6a6fbcd ccff99d ff0e62c 6a6fbcd ccff99d d2e3c7f 8af0aff 4277202 8af0aff d2e3c7f 8af0aff 4277202 8af0aff d2e3c7f f74eb2e ccff99d f74eb2e 6a6fbcd d2e3c7f 6a6fbcd f74eb2e d2e3c7f 5e8e8f0 d2e3c7f 6a6fbcd d2e3c7f 6a6fbcd d2e3c7f 6a6fbcd 5e8e8f0 d2e3c7f 91326a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import os
import gradio as gr
import logging
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain, LLMChain
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate
import concurrent.futures
import timeout_decorator
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class QueryRefiner:
def __init__(self):
self.refinement_llm = ChatOpenAI(temperature=0.2, model_name='gpt-4o')
self.refinement_prompt = PromptTemplate(
input_variables=['query', 'context'],
template="""Refine and enhance the following query for maximum clarity and precision:
Original Query: {query}
Document Context: {context}
Enhanced Query Requirements:
- Restructure for optimal comprehension
- rewrite the original query for best comprehension for getting all the details in great attention to details
- Use specific structure and the response be according to context such as paragraphs or bullet points, headlines and subtexts
Refined Query:"""
)
self.refinement_chain = LLMChain(
llm=self.refinement_llm,
prompt=self.refinement_prompt
)
def refine_query(self, original_query, context_hints=''):
try:
refined_query = self.refinement_chain.run({
'query': original_query,
'context': context_hints or "General academic document"
})
return refined_query.strip()
except Exception as e:
logger.error(f"Query refinement error: {e}")
return original_query
class AdvancedPdfChatbot:
def __init__(self, openai_api_key):
os.environ["OPENAI_API_KEY"] = openai_api_key
self.embeddings = OpenAIEmbeddings()
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
self.llm = ChatOpenAI(temperature=0, model_name='gpt-4o')
self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
self.query_refiner = QueryRefiner()
self.db = None
self.chain = None
self.qa_prompt = PromptTemplate(
template="""You are an expert academic assistant analyzing a document. Provide well structured response in Markdown
Context: {context}
Question: {question}
Provide a comprehensive, precise answer based strictly on the document's content.
Use this format:
- Short summary of the response with a relevant title
- Headlines and bullet points with descriptions with breakdowns of each topics and details
- Conclusion
NOTE: Give precise and short answers when asked about specific terms and summary of specific topic
If the answer isn't directly available, explain why. """,
input_variables=["context", "question"]
)
def load_and_process_pdf(self, pdf_path):
loader = PyPDFLoader(pdf_path)
documents = loader.load()
texts = self.text_splitter.split_documents(documents)
self.db = FAISS.from_documents(texts, self.embeddings)
self.chain = ConversationalRetrievalChain.from_llm(
llm=self.llm,
retriever=self.db.as_retriever(search_kwargs={"k": 3}),
memory=self.memory,
combine_docs_chain_kwargs={"prompt": self.qa_prompt}
)
def chat(self, query):
if not self.chain:
return "Please upload a PDF first."
context_hints = self._extract_document_type()
refined_query = self.query_refiner.refine_query(query, context_hints)
result = self.chain({"question": refined_query})
return result['answer']
def _extract_document_type(self):
"""Extract basic document characteristics"""
if not self.db:
return ""
try:
first_doc = list(self.db.docstore._dict.values())[0].page_content[:500]
return f"Document appears to cover: {first_doc[:100]}..."
except:
return "Academic/technical document"
def clear_memory(self):
self.memory.clear()
# Gradio Interface
pdf_chatbot = AdvancedPdfChatbot(os.environ.get("OPENAI_API_KEY"))
def upload_pdf(pdf_file):
if pdf_file is None:
return "Please upload a PDF file."
file_path = pdf_file.name if hasattr(pdf_file, 'name') else pdf_file
try:
pdf_chatbot.load_and_process_pdf(file_path)
return f"PDF processed successfully: {file_path}"
except Exception as e:
logger.error(f"PDF processing error: {e}")
return f"Error processing PDF: {str(e)}"
def respond(message, history):
if not message:
return "", history
try:
bot_message = pdf_chatbot.chat(message)
history.append((message, bot_message))
return "", history
except Exception as e:
logger.error(f"Chat response error: {e}")
return f"Error: {str(e)}", history
def clear_chatbot():
pdf_chatbot.clear_memory()
return []
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# Advanced PDF Chatbot")
with gr.Row():
pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"])
upload_button = gr.Button("Process PDF")
upload_status = gr.Textbox(label="Upload Status")
upload_button.click(upload_pdf, inputs=[pdf_upload], outputs=[upload_status])
chatbot_interface = gr.Chatbot()
msg = gr.Textbox(placeholder="Enter your query...")
msg.submit(respond, inputs=[msg, chatbot_interface], outputs=[msg, chatbot_interface])
clear_button = gr.Button("Clear Conversation")
clear_button.click(clear_chatbot, outputs=[chatbot_interface])
if __name__ == "__main__":
demo.launch() |