File size: 4,160 Bytes
d8c3a88 d2e3c7f 5099842 6c5c0ad d2e3c7f 58027e2 5099842 4b219d0 58bf31d 75fd4bb 5099842 6a6fbcd d2e3c7f 1e82c8e 58bf31d 7970ea2 355b657 d2e3c7f 5099842 d290cdf db27fb7 d290cdf 5099842 d2e3c7f 5099842 58bf31d d2e3c7f 5099842 6a6fbcd 75fd4bb 5099842 7f36a98 75fd4bb 5099842 d2e3c7f 5099842 d2e3c7f 5e8e8f0 d2e3c7f 5099842 d2e3c7f 5099842 d2e3c7f 5099842 5e8e8f0 d2e3c7f b10e9f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import os
import gradio as gr
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate
openai_api_key = os.environ.get("OPENAI_API_KEY")
class AdvancedPdfChatbot:
def __init__(self, openai_api_key):
os.environ["OPENAI_API_KEY"] = openai_api_key
self.embeddings = OpenAIEmbeddings()
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
self.llm = ChatOpenAI(temperature=1.5,model_name='gpt-4o',max_tokens=3000)
self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
self.qa_chain = None
self.pdf_path = None
self.template = """
I want you to act as a chat assistant for research more similar to ChatGPT itself, specifically focusing on knowledge retrieval. Provide detailed responses with great attention to context understanding and structured format. Be specific and detail-oriented in your responses, ensuring accuracy and depth in information provided.
Note: If you dont know the answer from the given knowledge base say you dont know it, **dont hallucinate**.
Use Relevant formatting such as Headlines, subtexts or ordered lists when required but not always.
Context: {context}
Question: {question}
Answer:
"""
self.prompt = PromptTemplate(template=self.template, input_variables=["context", "question"])
def load_and_process_pdf(self, pdf_path):
loader = PyPDFLoader(pdf_path)
documents = loader.load()
texts = self.text_splitter.split_documents(documents)
self.db = FAISS.from_documents(texts, self.embeddings)
self.pdf_path = pdf_path
self.setup_conversation_chain()
def setup_conversation_chain(self):
self.qa_chain = ConversationalRetrievalChain.from_llm(
self.llm,
retriever=self.db.as_retriever(),
memory=self.memory,
combine_docs_chain_kwargs={"prompt": self.prompt}
)
def chat(self, query):
if not self.qa_chain:
return "Please upload a PDF first."
result = self.qa_chain({"question": query})
return result['answer']
def get_pdf_path(self):
# Return the stored PDF path
if self.pdf_path:
return self.pdf_path
else:
return "No PDF uploaded yet."
# Initialize the chatbot
pdf_chatbot = AdvancedPdfChatbot(openai_api_key)
def upload_pdf(pdf_file):
if pdf_file is None:
return "Please upload a PDF file."
file_path = pdf_file.name
pdf_chatbot.load_and_process_pdf(file_path)
return file_path
def respond(message, history):
bot_message = pdf_chatbot.chat(message)
history.append((message, bot_message))
return "", history
def clear_chatbot():
pdf_chatbot.memory.clear()
return []
def get_pdf_path():
# Call the method to return the current PDF path
return pdf_chatbot.get_pdf_path()
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# PDF Chatbot")
with gr.Row():
pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"])
upload_button = gr.Button("Process PDF")
upload_status = gr.Textbox(label="Upload Status")
upload_button.click(upload_pdf, inputs=[pdf_upload], outputs=[upload_status])
path_button = gr.Button("Get PDF Path")
pdf_path_display = gr.Textbox(label="Current PDF Path")
chatbot_interface = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
msg.submit(respond, inputs=[msg, chatbot_interface], outputs=[msg, chatbot_interface])
clear.click(clear_chatbot, outputs=[chatbot_interface])
path_button.click(get_pdf_path, outputs=[pdf_path_display])
if __name__ == "__main__":
demo.launch()
|