import os import gradio as gr from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.chains import ConversationalRetrievalChain from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.prompts import PromptTemplate openai_api_key = os.environ.get("OPENAI_API_KEY") class AdvancedPdfChatbot: def __init__(self, openai_api_key): os.environ["OPENAI_API_KEY"] = openai_api_key self.embeddings = OpenAIEmbeddings() self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) self.llm = ChatOpenAI(temperature=1.5,model_name='gpt-4o',max_tokens=3000) self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) self.qa_chain = None self.pdf_path = None self.template = """ I want you to act as a chat assistant for research more similar to ChatGPT itself, specifically focusing on knowledge retrieval. Provide detailed responses with great attention to context understanding and structured format. Be specific and detail-oriented in your responses, ensuring accuracy and depth in information provided. Note: If you dont know the answer from the given knowledge base say you dont know it, **dont hallucinate**. Use Relevant formatting such as Headlines, subtexts or ordered lists when required but not always. Context: {context} Question: {question} Answer: """ self.prompt = PromptTemplate(template=self.template, input_variables=["context", "question"]) def load_and_process_pdf(self, pdf_path): loader = PyPDFLoader(pdf_path) documents = loader.load() texts = self.text_splitter.split_documents(documents) self.db = FAISS.from_documents(texts, self.embeddings) self.pdf_path = pdf_path self.setup_conversation_chain() def setup_conversation_chain(self): self.qa_chain = ConversationalRetrievalChain.from_llm( self.llm, retriever=self.db.as_retriever(), memory=self.memory, combine_docs_chain_kwargs={"prompt": self.prompt} ) def chat(self, query): if not self.qa_chain: return "Please upload a PDF first." result = self.qa_chain({"question": query}) return result['answer'] def get_pdf_path(self): # Return the stored PDF path if self.pdf_path: return self.pdf_path else: return "No PDF uploaded yet." # Initialize the chatbot pdf_chatbot = AdvancedPdfChatbot(openai_api_key) def upload_pdf(pdf_file): if pdf_file is None: return "Please upload a PDF file." file_path = pdf_file.name pdf_chatbot.load_and_process_pdf(file_path) return file_path def respond(message, history): bot_message = pdf_chatbot.chat(message) history.append((message, bot_message)) return "", history def clear_chatbot(): pdf_chatbot.memory.clear() return [] def get_pdf_path(): # Call the method to return the current PDF path return pdf_chatbot.get_pdf_path() # Create the Gradio interface with gr.Blocks() as demo: gr.Markdown("# PDF Chatbot") with gr.Row(): pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"]) upload_button = gr.Button("Process PDF") upload_status = gr.Textbox(label="Upload Status") upload_button.click(upload_pdf, inputs=[pdf_upload], outputs=[upload_status]) path_button = gr.Button("Get PDF Path") pdf_path_display = gr.Textbox(label="Current PDF Path") chatbot_interface = gr.Chatbot() msg = gr.Textbox() clear = gr.Button("Clear") msg.submit(respond, inputs=[msg, chatbot_interface], outputs=[msg, chatbot_interface]) clear.click(clear_chatbot, outputs=[chatbot_interface]) path_button.click(get_pdf_path, outputs=[pdf_path_display]) if __name__ == "__main__": demo.launch()