import os import gradio as gr from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.chains import ConversationalRetrievalChain from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory import os openai_api_key = os.environ.get("OPENAI_API_KEY") class AdvancedPdfChatbot: def __init__(self, openai_api_key): os.environ["OPENAI_API_KEY"] = openai_api_key self.embeddings = OpenAIEmbeddings() self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) self.llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo") self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) self.qa_chain = None def load_and_process_pdf(self, pdf_path): loader = PyPDFLoader(pdf_path) documents = loader.load() texts = self.text_splitter.split_documents(documents) self.db = FAISS.from_documents(texts, self.embeddings) self.setup_conversation_chain() def setup_conversation_chain(self): self.qa_chain = ConversationalRetrievalChain.from_llm( self.llm, retriever=self.db.as_retriever(), memory=self.memory ) def chat(self, query): if not self.qa_chain: return "Please upload a PDF first." result = self.qa_chain({"question": query}) return result['answer'] # Initialize the chatbot pdf_chatbot = AdvancedPdfChatbot(openai_api_key) def upload_pdf(pdf_file): if pdf_file is None: return "Please upload a PDF file." file_path = pdf_file.name pdf_chatbot.load_and_process_pdf(file_path) return "PDF uploaded and processed successfully. You can now start chatting!" def respond(message, history): bot_message = pdf_chatbot.chat(message) history.append((message, bot_message)) return "", history # Create the Gradio interface with gr.Blocks() as demo: gr.Markdown("# PDF Chatbot") with gr.Row(): pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"]) upload_button = gr.Button("Process PDF") upload_status = gr.Textbox(label="Upload Status") upload_button.click(upload_pdf, inputs=[pdf_upload], outputs=[upload_status]) chatbot_interface = gr.Chatbot() msg = gr.Textbox() clear = gr.Button("Clear") msg.submit(respond, inputs=[msg, chatbot_interface], outputs=[msg, chatbot_interface]) clear.click(lambda: None, None, chatbot_interface, queue=False) if __name__ == "__main__": demo.launch()