pdf-chatbot-v1 / app.py
Pavan178's picture
Update app.py
4df026c verified
raw
history blame
6.26 kB
import gradio as gr
import os
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
from pathlib import Path
import chromadb
from unidecode import unidecode
from transformers import AutoTokenizer
import transformers
import torch
import tqdm
import accelerate
import re
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
def load_doc(list_file_path, chunk_size=600, chunk_overlap=40):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = chunk_size,
chunk_overlap = chunk_overlap)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
def create_db(splits, collection_name):
embedding = HuggingFaceEmbeddings()
new_client = chromadb.EphemeralClient()
vectordb = Chroma.from_documents(
documents=splits,
embedding=embedding,
client=new_client,
collection_name=collection_name,
)
return vectordb
def initialize_llmchain(llm_model, vector_db, progress=gr.Progress()):
progress(0.1, desc="Initializing HF Hub...")
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=0.7,
max_new_tokens=1024,
top_k=3,
)
progress(0.75, desc="Defining buffer memory...")
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever=vector_db.as_retriever()
progress(0.8, desc="Defining retrieval chain...")
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
progress(0.9, desc="Done!")
return qa_chain
def create_collection_name(filepath):
collection_name = Path(filepath).stem
collection_name = collection_name.replace(" ","-")
collection_name = unidecode(collection_name)
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
collection_name = collection_name[:50]
if len(collection_name) < 3:
collection_name = collection_name + 'xyz'
if not collection_name[0].isalnum():
collection_name = 'A' + collection_name[1:]
if not collection_name[-1].isalnum():
collection_name = collection_name[:-1] + 'Z'
return collection_name
def initialize_all(file_obj, progress=gr.Progress()):
file_path = [file_obj.name]
progress(0.1, desc="Creating collection name...")
collection_name = create_collection_name(file_path[0])
progress(0.25, desc="Loading document...")
doc_splits = load_doc(file_path)
progress(0.5, desc="Generating vector database...")
vector_db = create_db(doc_splits, collection_name)
progress(0.75, desc="Initializing LLM...")
qa_chain = initialize_llmchain(list_llm[0], vector_db, progress)
if qa_chain is None:
raise gr.Error("Failed to initialize QA chain. Please check the configuration.")
progress(1.0, desc="Initialization complete!")
return qa_chain, "Initialization complete!"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
if qa_chain is None:
return "QA chain is not initialized. Please upload the PDF and initialize again.", history, "", ""
formatted_chat_history = format_chat_history(message, history)
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1 if "page" in response_sources[0].metadata else "N/A"
return gr.update(value=""), [(message, response_answer)], response_source1, response_source1_page
def demo():
with gr.Blocks(theme="base") as demo:
qa_chain = gr.State()
gr.Markdown(
"""<center><h2>PDF-based chatbot</center></h2>
<h3>Ask any questions about your PDF document</h3>""")
document = gr.File(height=100, file_types=["pdf"], label="Upload your PDF document")
chatbot = gr.Chatbot(height=300)
with gr.Accordion("Advanced - Document references", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Page", scale=1)
msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
submit_btn = gr.Button("Submit message")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
document.upload(initialize_all, inputs=document, outputs=[qa_chain, gr.Textbox()])
msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[msg, chatbot, doc_source1, source1_page])
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[msg, chatbot, doc_source1, source1_page])
clear_btn.click(lambda:[None,"",0], inputs=None, outputs=[chatbot, doc_source1, source1_page])
demo.queue().launch(debug=True,share=True)
if __name__ == "__main__":
demo()