Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_huggingface import HuggingFaceEmbeddings , HuggingFaceEndpoint | |
from langchain_community.llms import HuggingFacePipeline | |
from langchain.chains import ConversationChain | |
from langchain.memory import ConversationBufferMemory | |
from pathlib import Path | |
import chromadb | |
from unidecode import unidecode | |
from transformers import AutoTokenizer | |
import transformers | |
import torch | |
import tqdm | |
import accelerate | |
import re | |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2"] | |
list_llm_simple = [os.path.basename(llm) for llm in list_llm] | |
def load_doc(list_file_path, chunk_size=600, chunk_overlap=40): | |
loaders = [PyPDFLoader(x) for x in list_file_path] | |
pages = [] | |
for loader in loaders: | |
pages.extend(loader.load()) | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size = chunk_size, | |
chunk_overlap = chunk_overlap) | |
doc_splits = text_splitter.split_documents(pages) | |
return doc_splits | |
def create_db(splits, collection_name): | |
embedding = HuggingFaceEmbeddings() | |
new_client = chromadb.EphemeralClient() | |
vectordb = Chroma.from_documents( | |
documents=splits, | |
embedding=embedding, | |
client=new_client, | |
collection_name=collection_name, | |
) | |
return vectordb | |
def initialize_llmchain(llm_model, vector_db, progress=gr.Progress()): | |
progress(0.1, desc="Initializing HF Hub...") | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
temperature=0.7, | |
max_new_tokens=1024, | |
top_k=3, | |
) | |
progress(0.75, desc="Defining buffer memory...") | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
output_key='answer', | |
return_messages=True | |
) | |
retriever=vector_db.as_retriever() | |
progress(0.8, desc="Defining retrieval chain...") | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
return_source_documents=True, | |
verbose=False, | |
) | |
progress(0.9, desc="Done!") | |
return qa_chain | |
def create_collection_name(filepath): | |
collection_name = Path(filepath).stem | |
collection_name = collection_name.replace(" ","-") | |
collection_name = unidecode(collection_name) | |
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name) | |
collection_name = collection_name[:50] | |
if len(collection_name) < 3: | |
collection_name = collection_name + 'xyz' | |
if not collection_name[0].isalnum(): | |
collection_name = 'A' + collection_name[1:] | |
if not collection_name[-1].isalnum(): | |
collection_name = collection_name[:-1] + 'Z' | |
return collection_name | |
def initialize_all(file_obj, progress=gr.Progress()): | |
file_path = [file_obj.name] | |
progress(0.1, desc="Creating collection name...") | |
collection_name = create_collection_name(file_path[0]) | |
progress(0.25, desc="Loading document...") | |
doc_splits = load_doc(file_path) | |
progress(0.5, desc="Generating vector database...") | |
vector_db = create_db(doc_splits, collection_name) | |
progress(0.75, desc="Initializing LLM...") | |
qa_chain = initialize_llmchain(list_llm[0], vector_db, progress) | |
if qa_chain is None: | |
raise gr.Error("Failed to initialize QA chain. Please check the configuration.") | |
progress(1.0, desc="Initialization complete!") | |
return qa_chain, "Initialization complete!" | |
def format_chat_history(message, chat_history): | |
formatted_chat_history = [] | |
for user_message, bot_message in chat_history: | |
formatted_chat_history.append(f"User: {user_message}") | |
formatted_chat_history.append(f"Assistant: {bot_message}") | |
return formatted_chat_history | |
def conversation(qa_chain, message, history): | |
if qa_chain is None: | |
return "QA chain is not initialized. Please upload the PDF and initialize again.", history, "", "" | |
formatted_chat_history = format_chat_history(message, history) | |
response = qa_chain({"question": message, "chat_history": formatted_chat_history}) | |
response_answer = response["answer"] | |
if response_answer.find("Helpful Answer:") != -1: | |
response_answer = response_answer.split("Helpful Answer:")[-1] | |
response_sources = response["source_documents"] | |
response_source1 = response_sources[0].page_content.strip() | |
response_source1_page = response_sources[0].metadata["page"] + 1 if "page" in response_sources[0].metadata else "N/A" | |
return gr.update(value=""), [(message, response_answer)], response_source1, response_source1_page | |
def demo(): | |
with gr.Blocks(theme="base") as demo: | |
qa_chain = gr.State() | |
gr.Markdown( | |
"""<center><h2>PDF-based chatbot</center></h2> | |
<h3>Ask any questions about your PDF document</h3>""") | |
document = gr.File(height=100, file_types=["pdf"], label="Upload your PDF document") | |
chatbot = gr.Chatbot(height=300) | |
with gr.Accordion("Advanced - Document references", open=False): | |
with gr.Row(): | |
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20) | |
source1_page = gr.Number(label="Page", scale=1) | |
msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True) | |
submit_btn = gr.Button("Submit message") | |
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation") | |
document.upload(initialize_all, inputs=document, outputs=[qa_chain, gr.Textbox()]) | |
msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[msg, chatbot, doc_source1, source1_page]) | |
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[msg, chatbot, doc_source1, source1_page]) | |
clear_btn.click(lambda:[None,"",0], inputs=None, outputs=[chatbot, doc_source1, source1_page]) | |
demo.queue().launch(debug=True) | |
if __name__ == "__main__": | |
demo() | |