Spaces:
Sleeping
Sleeping
File size: 12,553 Bytes
3ec9224 5be8df6 113e5f5 5db4902 5be8df6 5db4902 5be8df6 ee43a37 5db4902 5be8df6 327ecf1 1ef8d7c aa98840 9bf736d 5be8df6 113e5f5 a1d54f6 ee43a37 113e5f5 ee43a37 113e5f5 b1ec9ac 5be8df6 1d96682 5be8df6 113e5f5 5be8df6 1ef8d7c 113e5f5 1ef8d7c 5be8df6 1ef8d7c 570dc7b 5be8df6 9bf736d 113e5f5 aa98840 9bf736d 989bff5 08108c1 fa7cc51 6e8daa8 fa7cc51 6e8daa8 9bf736d 113e5f5 ee43a37 9bf736d 113e5f5 9bf736d 113e5f5 9bf736d 5be8df6 1ef8d7c 5be8df6 1ef8d7c 5be8df6 113e5f5 00bd139 5be8df6 00bd139 5be8df6 9733941 04361a6 9733941 8bef1bd 9733941 8bef1bd 5be8df6 9733941 8bef1bd 5be8df6 3ca2785 00bd139 1ef8d7c 5be8df6 113e5f5 6f396af 51d2a09 113e5f5 51d2a09 113e5f5 51d2a09 113e5f5 a25f0eb 113e5f5 5be8df6 113e5f5 5be8df6 113e5f5 14155e5 9733941 ee43a37 5be8df6 113e5f5 1ef8d7c 113e5f5 9733941 5be8df6 113e5f5 9733941 113e5f5 9733941 113e5f5 9733941 5be8df6 113e5f5 ee43a37 5be8df6 113e5f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import gradio as gr
import os
from huggingface_hub import login
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.memory import ConversationBufferMemory
import spaces
from pathlib import Path
import chromadb
from unidecode import unidecode
import re
# Global variables
global_llm = None
global_tokenizer = None
hf_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
if not hf_token:
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
# Log in to Hugging Face
login(token=hf_token)
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
@spaces.GPU
def load_doc(list_file_path, chunk_size, chunk_overlap):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
def create_db(splits, collection_name):
if torch.cuda.is_available():
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
embedding = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"use_auth_token": hf_token}
)
new_client = chromadb.EphemeralClient()
vectordb = Chroma.from_documents(
documents=splits,
embedding=embedding,
client=new_client,
collection_name=collection_name,
)
return vectordb
def create_collection_name(filepath):
collection_name = Path(filepath).stem
collection_name = collection_name.replace(" ", "-")
collection_name = unidecode(collection_name)
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
collection_name = collection_name[:50]
if len(collection_name) < 3:
collection_name = collection_name + 'xyz'
if not collection_name[0].isalnum():
collection_name = 'A' + collection_name[1:]
if not collection_name[-1].isalnum():
collection_name = collection_name[:-1] + 'Z'
return collection_name
def initialize_global_llm(llm_model, temperature, max_tokens, top_k, progress=gr.Progress()):
global global_llm, global_tokenizer
if global_llm is None:
progress(0.1, desc="Initializing HF tokenizer...")
global_tokenizer = AutoTokenizer.from_pretrained(llm_model, use_auth_token=hf_token)
progress(0.3, desc="Loading model...")
try:
model = AutoModelForCausalLM.from_pretrained(
llm_model,
use_auth_token=hf_token,
torch_dtype=torch.float16,
device_map="auto"
)
except RuntimeError as e:
if "CUDA out of memory" in str(e):
raise gr.Error("GPU memory exceeded. Try a smaller model or reduce batch size.")
else:
raise e
progress(0.5, desc="Initializing HF pipeline...")
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=global_tokenizer,
torch_dtype=torch.float16,
device_map="auto",
max_new_tokens=max_tokens,
do_sample=True,
top_k=top_k,
num_return_sequences=1,
eos_token_id=global_tokenizer.eos_token_id
)
global_llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
progress(0.9, desc="LLM initialization complete!")
return "LLM initialized successfully!"
else:
progress(0.9, desc="Using previously initialized LLM.")
return "Using previously initialized LLM."
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
if list_file_obj is None or len(list_file_obj) == 0:
return None, None, "Error: No files uploaded. Please upload PDF files first."
list_file_path = [x.name for x in list_file_obj if x is not None]
if not list_file_path:
return None, None, "Error: No valid files found. Please upload PDF files."
progress(0.1, desc="Creating collection name...")
collection_name = create_collection_name(list_file_path[0])
progress(0.25, desc="Loading document...")
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
progress(0.5, desc="Generating vector database...")
vector_db = create_db(doc_splits, collection_name)
progress(0.9, desc="Done!")
return vector_db, collection_name, "Complete!"
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
llm_name = list_llm[llm_option]
global_llm = initialize_global_llm(llm_name, llm_temperature, max_tokens, top_k, progress)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
global_llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain, "Complete!"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
def demo():
with gr.Blocks(theme="base") as demo:
vector_db = gr.State()
qa_chain = gr.State()
collection_name = gr.State()
gr.Markdown(
"""<center><h2>GPU-Accelerated PDF-based Chatbot</center></h2>
<h3>Ask any questions about your PDF documents</h3>""")
gr.Markdown(
"""<b>Note:</b> This AI assistant uses GPU acceleration for faster processing.
It performs retrieval-augmented generation (RAG) from your PDF documents using Langchain and open-source LLMs.
This chatbot takes past questions into account and includes document references.""")
with gr.Tab("Step 1 - Initialize LLM"):
llm_btn = gr.Radio(list_llm_simple, label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model")
with gr.Accordion("Advanced options - LLM model", open=False):
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
llm_progress = gr.Textbox(value="Not initialized", label="LLM initialization status")
init_llm_btn = gr.Button("Initialize LLM")
with gr.Tab("Step 2 - Upload PDF"):
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
with gr.Tab("Step 3 - Process document"):
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
with gr.Accordion("Advanced options - Document text splitter", open=False):
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
db_progress = gr.Textbox(label="Vector database initialization", value="None")
db_btn = gr.Button("Generate vector database")
with gr.Tab("Step 4 - Initialize QA chain"):
llm_progress = gr.Textbox(value="None",label="QA chain initialization")
qachain_btn = gr.Button("Initialize Question Answering chain")
with gr.Tab("Step 5 - Chatbot"):
chatbot = gr.Chatbot(height=300)
with gr.Accordion("Advanced - Document references", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Page", scale=1)
with gr.Row():
msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
with gr.Row():
submit_btn = gr.Button("Submit message")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
# Event handlers
init_llm_btn.click(
initialize_global_llm,
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk],
outputs=[llm_progress]
)
db_btn.click(initialize_database,
inputs=[document, slider_chunk_size, slider_chunk_overlap],
outputs=[vector_db, collection_name, db_progress])
qachain_btn.click(initialize_LLM,
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False)
# Chatbot events
msg.submit(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False)
submit_btn.click(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False)
clear_btn.click(lambda:[None,"",0,"",0,"",0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo() |