Update app.py
Browse files
app.py
CHANGED
@@ -1,378 +1,84 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
|
4 |
-
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from
|
7 |
-
from langchain.
|
8 |
-
from
|
9 |
-
from
|
10 |
-
from langchain.
|
11 |
-
from langchain.
|
12 |
-
|
13 |
-
|
14 |
-
from pathlib import Path
|
15 |
-
import chromadb
|
16 |
-
from unidecode import unidecode
|
17 |
-
|
18 |
-
from transformers import AutoTokenizer
|
19 |
-
import transformers
|
20 |
-
import torch
|
21 |
-
import tqdm
|
22 |
-
import accelerate
|
23 |
-
import re
|
24 |
-
|
25 |
|
|
|
|
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
-
"google/gemma-7b-it","google/gemma-2b-it", \
|
30 |
-
"HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", \
|
31 |
-
"meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \
|
32 |
-
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \
|
33 |
-
"google/flan-t5-xxl"
|
34 |
-
]
|
35 |
-
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
loaders = [PyPDFLoader(x) for x in list_file_path]
|
43 |
-
pages = []
|
44 |
-
for loader in loaders:
|
45 |
-
pages.extend(loader.load())
|
46 |
-
# text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
|
47 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
48 |
-
chunk_size = chunk_size,
|
49 |
-
chunk_overlap = chunk_overlap)
|
50 |
-
doc_splits = text_splitter.split_documents(pages)
|
51 |
-
return doc_splits
|
52 |
|
|
|
|
|
|
|
53 |
|
54 |
-
# Create
|
55 |
-
|
56 |
-
|
57 |
-
new_client = chromadb.EphemeralClient()
|
58 |
-
vectordb = Chroma.from_documents(
|
59 |
-
documents=splits,
|
60 |
-
embedding=embedding,
|
61 |
-
client=new_client,
|
62 |
-
collection_name=collection_name,
|
63 |
-
# persist_directory=default_persist_directory
|
64 |
-
)
|
65 |
-
return vectordb
|
66 |
|
|
|
|
|
67 |
|
68 |
-
#
|
69 |
-
|
70 |
-
embedding = HuggingFaceEmbeddings()
|
71 |
-
vectordb = Chroma(
|
72 |
-
# persist_directory=default_persist_directory,
|
73 |
-
embedding_function=embedding)
|
74 |
-
return vectordb
|
75 |
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
# progress(0.5, desc="Initializing HF pipeline...")
|
84 |
-
# pipeline=transformers.pipeline(
|
85 |
-
# "text-generation",
|
86 |
-
# model=llm_model,
|
87 |
-
# tokenizer=tokenizer,
|
88 |
-
# torch_dtype=torch.bfloat16,
|
89 |
-
# trust_remote_code=True,
|
90 |
-
# device_map="auto",
|
91 |
-
# # max_length=1024,
|
92 |
-
# max_new_tokens=max_tokens,
|
93 |
-
# do_sample=True,
|
94 |
-
# top_k=top_k,
|
95 |
-
# num_return_sequences=1,
|
96 |
-
# eos_token_id=tokenizer.eos_token_id
|
97 |
-
# )
|
98 |
-
# llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
|
99 |
-
|
100 |
-
# HuggingFaceHub uses HF inference endpoints
|
101 |
-
progress(0.5, desc="Initializing HF Hub...")
|
102 |
-
# Use of trust_remote_code as model_kwargs
|
103 |
-
# Warning: langchain issue
|
104 |
-
# URL: https://github.com/langchain-ai/langchain/issues/6080
|
105 |
-
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
106 |
-
llm = HuggingFaceEndpoint(
|
107 |
-
repo_id=llm_model,
|
108 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
|
109 |
-
temperature = temperature,
|
110 |
-
max_new_tokens = max_tokens,
|
111 |
-
top_k = top_k,
|
112 |
-
load_in_8bit = True,
|
113 |
-
)
|
114 |
-
elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
|
115 |
-
raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
|
116 |
-
llm = HuggingFaceEndpoint(
|
117 |
-
repo_id=llm_model,
|
118 |
-
temperature = temperature,
|
119 |
-
max_new_tokens = max_tokens,
|
120 |
-
top_k = top_k,
|
121 |
)
|
122 |
-
elif llm_model == "microsoft/phi-2":
|
123 |
-
# raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
|
124 |
-
llm = HuggingFaceEndpoint(
|
125 |
-
repo_id=llm_model,
|
126 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
127 |
-
temperature = temperature,
|
128 |
-
max_new_tokens = max_tokens,
|
129 |
-
top_k = top_k,
|
130 |
-
trust_remote_code = True,
|
131 |
-
torch_dtype = "auto",
|
132 |
-
)
|
133 |
-
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
134 |
-
llm = HuggingFaceEndpoint(
|
135 |
-
repo_id=llm_model,
|
136 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
|
137 |
-
temperature = temperature,
|
138 |
-
max_new_tokens = 250,
|
139 |
-
top_k = top_k,
|
140 |
-
)
|
141 |
-
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
|
142 |
-
raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
|
143 |
-
llm = HuggingFaceEndpoint(
|
144 |
-
repo_id=llm_model,
|
145 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
146 |
-
temperature = temperature,
|
147 |
-
max_new_tokens = max_tokens,
|
148 |
-
top_k = top_k,
|
149 |
-
)
|
150 |
-
else:
|
151 |
-
llm = HuggingFaceEndpoint(
|
152 |
-
repo_id=llm_model,
|
153 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
154 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
155 |
-
temperature = temperature,
|
156 |
-
max_new_tokens = max_tokens,
|
157 |
-
top_k = top_k,
|
158 |
-
)
|
159 |
-
|
160 |
-
progress(0.75, desc="Defining buffer memory...")
|
161 |
-
memory = ConversationBufferMemory(
|
162 |
-
memory_key="chat_history",
|
163 |
-
output_key='answer',
|
164 |
-
return_messages=True
|
165 |
-
)
|
166 |
-
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
|
167 |
-
retriever=vector_db.as_retriever()
|
168 |
-
progress(0.8, desc="Defining retrieval chain...")
|
169 |
-
qa_chain = ConversationalRetrievalChain.from_llm(
|
170 |
-
llm,
|
171 |
-
retriever=retriever,
|
172 |
-
chain_type="stuff",
|
173 |
-
memory=memory,
|
174 |
-
# combine_docs_chain_kwargs={"prompt": your_prompt})
|
175 |
-
return_source_documents=True,
|
176 |
-
#return_generated_question=False,
|
177 |
-
verbose=False,
|
178 |
-
)
|
179 |
-
progress(0.9, desc="Done!")
|
180 |
-
return qa_chain
|
181 |
-
|
182 |
-
|
183 |
-
# Generate collection name for vector database
|
184 |
-
# - Use filepath as input, ensuring unicode text
|
185 |
-
def create_collection_name(filepath):
|
186 |
-
# Extract filename without extension
|
187 |
-
collection_name = Path(filepath).stem
|
188 |
-
# Fix potential issues from naming convention
|
189 |
-
## Remove space
|
190 |
-
collection_name = collection_name.replace(" ","-")
|
191 |
-
## ASCII transliterations of Unicode text
|
192 |
-
collection_name = unidecode(collection_name)
|
193 |
-
## Remove special characters
|
194 |
-
#collection_name = re.findall("[\dA-Za-z]*", collection_name)[0]
|
195 |
-
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
196 |
-
## Limit length to 50 characters
|
197 |
-
collection_name = collection_name[:50]
|
198 |
-
## Minimum length of 3 characters
|
199 |
-
if len(collection_name) < 3:
|
200 |
-
collection_name = collection_name + 'xyz'
|
201 |
-
## Enforce start and end as alphanumeric character
|
202 |
-
if not collection_name[0].isalnum():
|
203 |
-
collection_name = 'A' + collection_name[1:]
|
204 |
-
if not collection_name[-1].isalnum():
|
205 |
-
collection_name = collection_name[:-1] + 'Z'
|
206 |
-
print('Filepath: ', filepath)
|
207 |
-
print('Collection name: ', collection_name)
|
208 |
-
return collection_name
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
def conversation(qa_chain, message, history):
|
246 |
-
formatted_chat_history = format_chat_history(message, history)
|
247 |
-
#print("formatted_chat_history",formatted_chat_history)
|
248 |
-
|
249 |
-
# Generate response using QA chain
|
250 |
-
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
251 |
-
response_answer = response["answer"]
|
252 |
-
if response_answer.find("Helpful Answer:") != -1:
|
253 |
-
response_answer = response_answer.split("Helpful Answer:")[-1]
|
254 |
-
response_sources = response["source_documents"]
|
255 |
-
response_source1 = response_sources[0].page_content.strip()
|
256 |
-
response_source2 = response_sources[1].page_content.strip()
|
257 |
-
response_source3 = response_sources[2].page_content.strip()
|
258 |
-
# Langchain sources are zero-based
|
259 |
-
response_source1_page = response_sources[0].metadata["page"] + 1
|
260 |
-
response_source2_page = response_sources[1].metadata["page"] + 1
|
261 |
-
response_source3_page = response_sources[2].metadata["page"] + 1
|
262 |
-
# print ('chat response: ', response_answer)
|
263 |
-
# print('DB source', response_sources)
|
264 |
-
|
265 |
-
# Append user message and response to chat history
|
266 |
-
new_history = history + [(message, response_answer)]
|
267 |
-
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
|
268 |
-
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
269 |
-
|
270 |
-
|
271 |
-
def upload_file(file_obj):
|
272 |
-
list_file_path = []
|
273 |
-
for idx, file in enumerate(file_obj):
|
274 |
-
file_path = file_obj.name
|
275 |
-
list_file_path.append(file_path)
|
276 |
-
# print(file_path)
|
277 |
-
# initialize_database(file_path, progress)
|
278 |
-
return list_file_path
|
279 |
-
|
280 |
-
|
281 |
-
def demo():
|
282 |
-
with gr.Blocks(theme="base") as demo:
|
283 |
-
vector_db = gr.State()
|
284 |
-
qa_chain = gr.State()
|
285 |
-
collection_name = gr.State()
|
286 |
-
|
287 |
-
gr.Markdown(
|
288 |
-
"""<center><h2>PDF-based chatbot</center></h2>
|
289 |
-
<h3>Ask any questions about your PDF documents</h3>""")
|
290 |
-
gr.Markdown(
|
291 |
-
"""<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
|
292 |
-
The user interface explicitely shows multiple steps to help understand the RAG workflow.
|
293 |
-
This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
|
294 |
-
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
|
295 |
-
""")
|
296 |
-
|
297 |
-
with gr.Tab("Step 1 - Upload PDF"):
|
298 |
-
with gr.Row():
|
299 |
-
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
300 |
-
# upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
|
301 |
-
|
302 |
-
with gr.Tab("Step 2 - Process document"):
|
303 |
-
with gr.Row():
|
304 |
-
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
|
305 |
-
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
306 |
-
with gr.Row():
|
307 |
-
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
308 |
-
with gr.Row():
|
309 |
-
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
|
310 |
-
with gr.Row():
|
311 |
-
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
312 |
-
with gr.Row():
|
313 |
-
db_btn = gr.Button("Generate vector database")
|
314 |
-
|
315 |
-
with gr.Tab("Step 3 - Initialize QA chain"):
|
316 |
-
with gr.Row():
|
317 |
-
llm_btn = gr.Radio(list_llm_simple, \
|
318 |
-
label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
|
319 |
-
with gr.Accordion("Advanced options - LLM model", open=False):
|
320 |
-
with gr.Row():
|
321 |
-
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
322 |
-
with gr.Row():
|
323 |
-
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
324 |
-
with gr.Row():
|
325 |
-
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
326 |
-
with gr.Row():
|
327 |
-
llm_progress = gr.Textbox(value="None",label="QA chain initialization")
|
328 |
-
with gr.Row():
|
329 |
-
qachain_btn = gr.Button("Initialize Question Answering chain")
|
330 |
-
|
331 |
-
with gr.Tab("Step 4 - Chatbot"):
|
332 |
-
chatbot = gr.Chatbot(height=300)
|
333 |
-
with gr.Accordion("Advanced - Document references", open=False):
|
334 |
-
with gr.Row():
|
335 |
-
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
336 |
-
source1_page = gr.Number(label="Page", scale=1)
|
337 |
-
with gr.Row():
|
338 |
-
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
339 |
-
source2_page = gr.Number(label="Page", scale=1)
|
340 |
-
with gr.Row():
|
341 |
-
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
342 |
-
source3_page = gr.Number(label="Page", scale=1)
|
343 |
-
with gr.Row():
|
344 |
-
msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
|
345 |
-
with gr.Row():
|
346 |
-
submit_btn = gr.Button("Submit message")
|
347 |
-
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
|
348 |
-
|
349 |
-
# Preprocessing events
|
350 |
-
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
|
351 |
-
db_btn.click(initialize_database, \
|
352 |
-
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
|
353 |
-
outputs=[vector_db, collection_name, db_progress])
|
354 |
-
qachain_btn.click(initialize_LLM, \
|
355 |
-
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
|
356 |
-
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
|
357 |
-
inputs=None, \
|
358 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
359 |
-
queue=False)
|
360 |
-
|
361 |
-
# Chatbot events
|
362 |
-
msg.submit(conversation, \
|
363 |
-
inputs=[qa_chain, msg, chatbot], \
|
364 |
-
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
365 |
-
queue=False)
|
366 |
-
submit_btn.click(conversation, \
|
367 |
-
inputs=[qa_chain, msg, chatbot], \
|
368 |
-
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
369 |
-
queue=False)
|
370 |
-
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
|
371 |
-
inputs=None, \
|
372 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
373 |
-
queue=False)
|
374 |
-
demo.queue().launch(debug=True)
|
375 |
-
|
376 |
-
|
377 |
-
if __name__ == "__main__":
|
378 |
-
demo()
|
|
|
1 |
import gradio as gr
|
2 |
+
from langchain_community.document_loaders import WebBaseLoader
|
|
|
|
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain.vectorstores import Chroma
|
5 |
+
from langchain.embeddings import OpenAIEmbeddings
|
6 |
+
from langchain.chat_models import ChatOpenAI
|
7 |
+
from langchain import hub
|
8 |
+
from langchain.schema.runnable import RunnablePassthrough
|
9 |
+
from langchain.schema.output_parser import StrOutputParser
|
10 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Set your OpenAI API key
|
13 |
+
os.environ["OPENAI_API_KEY"] = "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"
|
14 |
|
15 |
+
# Global variable to store the RAG chain object
|
16 |
+
rag_chain = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
def process_url(url):
|
19 |
+
try:
|
20 |
+
# Initialize the loader with the specified web path
|
21 |
+
loader = WebBaseLoader(web_paths=[url])
|
22 |
+
docs = loader.load()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# Split the documents
|
25 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200, add_start_index=True)
|
26 |
+
all_splits = text_splitter.split_documents(docs)
|
27 |
|
28 |
+
# Create vectorstore
|
29 |
+
vectorstore = Chroma.from_documents(documents=all_splits, embedding=OpenAIEmbeddings())
|
30 |
+
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 2})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# Define the prompt
|
33 |
+
prompt = hub.pull("rlm/rag-prompt")
|
34 |
|
35 |
+
# Define the LLM
|
36 |
+
llm = ChatOpenAI(model="gpt-4")
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# Define the RAG chain
|
39 |
+
def format_docs(docs):
|
40 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
41 |
|
42 |
+
global rag_chain
|
43 |
+
rag_chain = (
|
44 |
+
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
45 |
+
| prompt
|
46 |
+
| llm
|
47 |
+
| StrOutputParser()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
return "Successfully processed the URL. You can now ask questions."
|
51 |
+
except Exception as e:
|
52 |
+
return f"Error processing URL: {e}"
|
53 |
+
|
54 |
+
def chat_with_rag_chain(message):
|
55 |
+
global rag_chain
|
56 |
+
if rag_chain:
|
57 |
+
try:
|
58 |
+
response = rag_chain.invoke(message)
|
59 |
+
return response
|
60 |
+
except Exception as e:
|
61 |
+
return f"Error invoking RAG chain: {e}"
|
62 |
+
else:
|
63 |
+
return "Please enter a URL first and process it."
|
64 |
+
|
65 |
+
# Gradio interface for entering the URL
|
66 |
+
url_input_interface = gr.Interface(
|
67 |
+
fn=process_url,
|
68 |
+
inputs=gr.Textbox(label="Enter URL", placeholder="https://example.com"),
|
69 |
+
outputs=gr.Textbox(label="Status"),
|
70 |
+
title="RAG Chain URL Processor",
|
71 |
+
description="Enter a URL to process the article using a RAG chain model."
|
72 |
+
)
|
73 |
+
|
74 |
+
# Gradio chat interface for Q&A
|
75 |
+
chat_interface = gr.Interface(
|
76 |
+
fn=chat_with_rag_chain,
|
77 |
+
inputs=gr.Textbox(label="Your Question"),
|
78 |
+
outputs=gr.Textbox(label="Response"),
|
79 |
+
title="RAG Chain Chat Interface",
|
80 |
+
description="Chat with the RAG chain model after processing a URL."
|
81 |
+
)
|
82 |
+
|
83 |
+
# Combining the two interfaces in a tab layout
|
84 |
+
gr.TabbedInterface([url_input_interface, chat_interface], ["URL Processor", "Chat Interface"]).launch(debug=True, share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|