Spaces:
Sleeping
Sleeping
Upload address_extractor.py
Browse files- address_extractor.py +155 -0
address_extractor.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import time, sys
|
4 |
+
from os import path, listdir
|
5 |
+
from pywhispercpp.model import Model
|
6 |
+
|
7 |
+
|
8 |
+
class AddressExtractor():
|
9 |
+
def __init__(self):
|
10 |
+
model_id = "microsoft/bitnet-b1.58-2B-4T"
|
11 |
+
|
12 |
+
# Load tokenizer and model
|
13 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
14 |
+
self.bitnet_model = AutoModelForCausalLM.from_pretrained(
|
15 |
+
model_id,
|
16 |
+
torch_dtype=torch.bfloat16,
|
17 |
+
device_map = "cpu",
|
18 |
+
)
|
19 |
+
|
20 |
+
# Set pad_token_id to eos_token_id
|
21 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
22 |
+
self.bitnet_model.config.pad_token_id = self.tokenizer.pad_token_id
|
23 |
+
|
24 |
+
|
25 |
+
self.whisper_model = Model('small.en-q5_1', n_threads = 16, language = 'en')
|
26 |
+
# self.whisper_model = Model('small.en', n_threads = 16, language = 'en')
|
27 |
+
# self.whisper_model = Model('tiny.en', n_threads = 16, language = 'en')
|
28 |
+
|
29 |
+
self.system_prompt_speech = """
|
30 |
+
Your task is to extract the US address given the ASR inferred text (using whisper-large-v3-turbo model) without generating any additional text description. Only extract the address related entities and generate the final address from the extracted content.
|
31 |
+
"""
|
32 |
+
|
33 |
+
self.system_prompt_text = """
|
34 |
+
Your task is to extract the US address given the input text without generating any additional text description. Only extract the address related entities and generate the final address from the extracted content.
|
35 |
+
"""
|
36 |
+
|
37 |
+
# self.sample_files_path = "./one_sentence_us_address/"
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
def compute_latency(self, start_time, end_time):
|
42 |
+
tr_duration= end_time-start_time
|
43 |
+
hours = tr_duration // 3600
|
44 |
+
minutes = (tr_duration - (hours * 3600)) // 60
|
45 |
+
seconds = tr_duration - ((hours * 3600) + (minutes * 60))
|
46 |
+
msg = f'inference elapsed time was {str(hours)} hours, {minutes:4.1f} minutes, {seconds:4.2f} seconds'
|
47 |
+
|
48 |
+
return msg
|
49 |
+
|
50 |
+
|
51 |
+
def infer_text_sample(self, input_text):
|
52 |
+
|
53 |
+
messages = [
|
54 |
+
{"role": "system", "content": self.system_prompt_text},
|
55 |
+
{"role": "user", "content": input_text},
|
56 |
+
]
|
57 |
+
|
58 |
+
if input_text.lower().strip() != "":
|
59 |
+
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
60 |
+
chat_input = self.tokenizer(prompt, return_tensors="pt").to(self.bitnet_model.device)
|
61 |
+
|
62 |
+
# Generate response
|
63 |
+
chat_outputs = self.bitnet_model.generate(**chat_input, max_new_tokens=256)
|
64 |
+
generated_text = self.tokenizer.decode(chat_outputs[0][chat_input['input_ids'].shape[-1]:], skip_special_tokens=True) # Decode only the response part
|
65 |
+
|
66 |
+
if generated_text.strip() != "":
|
67 |
+
print("\n\n", "="*100)
|
68 |
+
print("Address Extracted: ", generated_text)
|
69 |
+
print("="*100, "\n\n")
|
70 |
+
|
71 |
+
|
72 |
+
def preprocess_text(self, input_text):
|
73 |
+
### Preprocessing the ASR generated text
|
74 |
+
input_tokens = []
|
75 |
+
for word in input_text.split(" "):
|
76 |
+
word = word.strip()
|
77 |
+
if word != "":
|
78 |
+
if "," in word:
|
79 |
+
try:
|
80 |
+
num = int(word)
|
81 |
+
word = word.replace(",", " ")
|
82 |
+
except:
|
83 |
+
word = word.replace(",", ", ")
|
84 |
+
input_tokens.append(word)
|
85 |
+
input_text = " ".join(input_tokens)
|
86 |
+
|
87 |
+
return input_text
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
def infer_audio_sample(self, audio_input_file_path):
|
92 |
+
input_text = ""
|
93 |
+
segments = self.whisper_model.transcribe(audio_input_file_path)
|
94 |
+
for segment in segments:
|
95 |
+
input_text += segment.text.strip()
|
96 |
+
|
97 |
+
input_text = self.preprocess_text(input_text)
|
98 |
+
|
99 |
+
print("\n\n", "="*100)
|
100 |
+
print("Transcribe Text: ", input_text)
|
101 |
+
print("="*100, "\n")
|
102 |
+
|
103 |
+
messages = [
|
104 |
+
{"role": "system", "content": self.system_prompt_speech},
|
105 |
+
{"role": "user", "content": input_text},
|
106 |
+
]
|
107 |
+
|
108 |
+
if input_text.lower().strip() != "":
|
109 |
+
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
110 |
+
chat_input = self.tokenizer(prompt, return_tensors="pt").to(self.bitnet_model.device)
|
111 |
+
|
112 |
+
# Generate response
|
113 |
+
chat_outputs = self.bitnet_model.generate(**chat_input, max_new_tokens=256)
|
114 |
+
generated_text = self.tokenizer.decode(chat_outputs[0][chat_input['input_ids'].shape[-1]:], skip_special_tokens=True) # Decode only the response part
|
115 |
+
|
116 |
+
if generated_text.strip() != "":
|
117 |
+
print("\n\n", "="*100)
|
118 |
+
print("Address Extracted: ", generated_text)
|
119 |
+
print("="*100, "\n\n")
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
def main():
|
124 |
+
|
125 |
+
address_extract = AddressExtractor()
|
126 |
+
|
127 |
+
input_data = ""
|
128 |
+
while input_data.strip() != "exit":
|
129 |
+
input_data = input("Paste audio path or Text (type `exit` to quit): ")
|
130 |
+
|
131 |
+
if input_data.strip() == "exit":
|
132 |
+
sys.exit(0)
|
133 |
+
|
134 |
+
audio_path = ""
|
135 |
+
input_text = ""
|
136 |
+
if input_data.strip().endswith(".wav"):
|
137 |
+
audio_path = input_data.strip()
|
138 |
+
if not path.exists(audio_path):
|
139 |
+
print(f"Error: The audio file '{audio_path}' does not exist.")
|
140 |
+
|
141 |
+
else:
|
142 |
+
address_extract.infer_audio_sample(audio_path)
|
143 |
+
|
144 |
+
|
145 |
+
elif input_data.strip() != "":
|
146 |
+
input_text = input_data.strip()
|
147 |
+
address_extract.infer_text_sample(input_text)
|
148 |
+
|
149 |
+
|
150 |
+
else:
|
151 |
+
print("Error: Please provide the valid input")
|
152 |
+
|
153 |
+
|
154 |
+
if __name__ == "__main__":
|
155 |
+
main()
|