File size: 1,011 Bytes
662636f
23752c4
 
6e98be9
 
23752c4
 
6e98be9
23752c4
bfb2729
 
 
6e98be9
bfb2729
 
 
 
991d32c
 
1b40fc5
991d32c
 
6e98be9
 
 
 
 
 
 
 
bfb2729
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import streamlit as st
import transformers
from transformers import pipeline
import PIL
from PIL import Image

pipe = pipeline("summarization", model="google/pegasus-xsum")
agepipe = pipeline("image-classification", model="dima806/facial_age_image_detection")

st.title("NLP APP")
option = st.sidebar.selectbox(
    "Choose a task",
    ("Summarization", "Age Detection", "Emotion Detection", "Image Generation")
)
if option == "Summarization":
    st.title("Text Summarization")
    text = st.text_area("Enter text to summarize")
    if st.button("Summarize"):
        if text:
            st.write("Summary:", pipe(text)[0]["summary_text"])
        else:
            st.write("Please enter text to summarize.")
elif option == "Age Detection"
    st.title("welcome to age detection app")

    uploaded_files = st.file_uploader("Choose a image file",type="jpg")

    if uploaded_files is not None:
        Image=Image.open(uploaded_files)
        st.write(agepipe(Image)[0]["label"])

else:
    st.title("None")