Spaces:
Sleeping
Sleeping
File size: 1,011 Bytes
662636f 23752c4 6e98be9 23752c4 6e98be9 23752c4 bfb2729 6e98be9 bfb2729 991d32c 1b40fc5 991d32c 6e98be9 bfb2729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import streamlit as st
import transformers
from transformers import pipeline
import PIL
from PIL import Image
pipe = pipeline("summarization", model="google/pegasus-xsum")
agepipe = pipeline("image-classification", model="dima806/facial_age_image_detection")
st.title("NLP APP")
option = st.sidebar.selectbox(
"Choose a task",
("Summarization", "Age Detection", "Emotion Detection", "Image Generation")
)
if option == "Summarization":
st.title("Text Summarization")
text = st.text_area("Enter text to summarize")
if st.button("Summarize"):
if text:
st.write("Summary:", pipe(text)[0]["summary_text"])
else:
st.write("Please enter text to summarize.")
elif option == "Age Detection"
st.title("welcome to age detection app")
uploaded_files = st.file_uploader("Choose a image file",type="jpg")
if uploaded_files is not None:
Image=Image.open(uploaded_files)
st.write(agepipe(Image)[0]["label"])
else:
st.title("None") |