File size: 5,574 Bytes
6afc25f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

from model import Wav2VecModel
from dataset import S2IDataset, collate_fn
import requests
requests.packages.urllib3.disable_warnings()

import torch
import torch.nn as nn
import torchaudio
import torch.nn.functional as F
import pytorch_lightning as pl

from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger

# SEED
SEED=100
pl.utilities.seed.seed_everything(SEED)
torch.manual_seed(SEED)

import os
os.environ['WANDB_MODE'] = 'online'
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"  
os.environ["CUDA_VISIBLE_DEVICES"]="1"

class LightningModel(pl.LightningModule):
    def __init__(self,):
        super().__init__()
        self.model = Wav2VecModel()

    def forward(self, x):
        return self.model(x)

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=1e-5)
        return [optimizer]

    def loss_fn(self, prediction, targets):
        return nn.CrossEntropyLoss()(prediction, targets)

    def training_step(self, batch, batch_idx):
        x, y = batch
        y = y.view(-1)

        logits = self(x)        
        probs = F.softmax(logits, dim=1)
        loss = self.loss_fn(logits, y)

        winners = logits.argmax(dim=1)
        corrects = (winners == y)
        acc = corrects.sum().float()/float(logits.size(0))

        self.log('train/loss', loss, on_step=False, on_epoch=True, prog_bar=True)
        self.log('train/acc', acc, on_step=False, on_epoch=True, prog_bar=True)
        torch.cuda.empty_cache()
        return {
            'loss':loss, 
            'acc':acc
            }

    def validation_step(self, batch, batch_idx):
        x, y = batch
        y = y.view(-1)

        logits = self(x)
        loss = self.loss_fn(logits, y)

        winners = logits.argmax(dim=1)
        corrects = (winners == y)
        acc = corrects.sum().float() / float( logits.size(0))

        self.log('val/loss' , loss, on_step=False, on_epoch=True, prog_bar=True)
        self.log('val/acc',acc, on_step=False, on_epoch=True, prog_bar=True)

        return {'val_loss':loss, 
                'val_acc':acc,
                }

    def test_step(self, batch, batch_idx):
        x, y = batch
        y = y.view(-1)

        logits = self(x)
        loss = self.loss_fn(logits, y)

        winners = logits.argmax(dim=1)
        corrects = (winners == y)
        acc = corrects.sum().float() / float( logits.size(0))

        self.log('val/loss' , loss, on_step=False, on_epoch=True, prog_bar=True)
        self.log('val/acc',acc, on_step=False, on_epoch=True, prog_bar=True)

        return {'val_loss':loss, 
                'val_acc':acc,
                }

    def predict(self, wav):
        self.eval()
        with torch.no_grad():
            output = self.forward(wav)
            predicted_class = torch.argmax(output, dim=1)
        return predicted_class

if __name__ == "__main__":

    dataset = S2IDataset(
        csv_path="./speech-to-intent/train.csv",
        wav_dir_path="/home/development/pavan/Telesoft/speech-to-intent-dataset/baselines/speech-to-intent"
    )

    test_dataset = S2IDataset(
        csv_path="./speech-to-intent/test.csv",
        wav_dir_path="/home/development/pavan/Telesoft/speech-to-intent-dataset/baselines/speech-to-intent"
    )

    train_len = int(len(dataset) * 0.90)
    val_len =  len(dataset) - train_len
    print(train_len, val_len)
    train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_len, val_len], generator=torch.Generator().manual_seed(SEED))
    print(len(test_dataset))

    trainloader = torch.utils.data.DataLoader(
            train_dataset, 
            batch_size=4, 
            shuffle=True, 
            num_workers=4,
            collate_fn = collate_fn,
        )
    
    valloader = torch.utils.data.DataLoader(
            val_dataset, 
            batch_size=4, 
            num_workers=4,
            collate_fn = collate_fn,
        )

    testloader = torch.utils.data.DataLoader(
            test_dataset, 
            #batch_size=4, 
            num_workers=4,
            collate_fn = collate_fn,
        )

    print(torch.cuda.mem_get_info())

    model = LightningModel()

    run_name = "wav2vec"
    logger = WandbLogger(
        name=run_name,
        project='S2I-baseline'
    )

    model_checkpoint_callback = ModelCheckpoint(
            dirpath='checkpoints',
            monitor='val/acc', 
            mode='max',
            verbose=1,
            filename=run_name + "-epoch={epoch}.ckpt")

    trainer = Trainer(
            fast_dev_run=False, 
            gpus=1,
            max_epochs=5, 
            checkpoint_callback=True,
            callbacks=[
                model_checkpoint_callback,
            ],
            logger=logger,
            )
    checkpoint_path = "./checkpoints/wav2vec-epoch=epoch=4.ckpt.ckpt"
    checkpoint = torch.load(checkpoint_path)
    model.load_state_dict(checkpoint['state_dict'])
    trainer = Trainer(
        gpus=1
    )

    #trainer.fit(model, train_dataloader=trainloader, val_dataloaders=valloader)
    #trainer.test(model,dataloaders=testloader,verbose=True)
    wav_path = "./speech-to-intent/wav_audios/92145547-3ab6-44e0-9245-085642fc4318.wav"
    resmaple = torchaudio.transforms.Resample(8000, 16000)
    wav_tensor,_ = torchaudio.load(wav_path)
    wav_tensor = resmaple(wav_tensor)
    model = model.to('cuda') 
    y_hat = model.predict(wav_tensor)
    #with torch.no_grad():
     #   y_hat = model(wav_tensor)

    print(y_hat)