S2I / app.py
Pavankalyan's picture
Update app.py
d6dd1d2
raw
history blame
1.18 kB
import gradio as gr
from transformers import pipeline
import json
import os
data_dict = {}
with open('./results_classification/file.json', 'r') as file:
data = json.load(file)
intents_dict = data
tokenizer = AutoTokenizer.from_pretrained("roberta-base")
model = AutoModelForSequenceClassification.from_pretrained("./results_classification/checkpoint-1890/")
def preprocess(text):
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
return inputs
def postprocess(outputs):
logits = outputs.logits
predicted_labels = logits.argmax(dim=1).tolist()
return predicted_labels
def predict(text):
inputs = preprocess(text)
with torch.no_grad():
outputs = model(**inputs)
predicted_labels = postprocess(outputs)
ans = intents_dict[predicted_labels[0]]
return ans
from transformers import pipeline
p = pipeline(model="openai/whisper-medium")
def transcribe(audio):
t = p(audio)['text']
ans = predict(t)
return ans
get_intent = gr.Interface(fn = transcribe,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs="text").launch()