Spaces:
Sleeping
Sleeping
Create sagan_inference.py
Browse files- sagan_inference.py +65 -0
sagan_inference.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import librosa
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
from sagan_model import SAGANModel # your model definition
|
6 |
+
|
7 |
+
### 1) Download & load your SAGAN weights from your HF repo ###
|
8 |
+
SAGAN_WEIGHTS_PATH = hf_hub_download(
|
9 |
+
repo_id="YOUR_USERNAME/sagan-space", # ← replace with your HF namespace
|
10 |
+
filename="sagan_weights.pth"
|
11 |
+
)
|
12 |
+
model = SAGANModel()
|
13 |
+
state_dict = torch.load(SAGAN_WEIGHTS_PATH, map_location="cpu")
|
14 |
+
model.load_state_dict(state_dict)
|
15 |
+
model.eval()
|
16 |
+
|
17 |
+
### 2) Age-group Z-score stats (proxy values from literature) ###
|
18 |
+
import math
|
19 |
+
STATS = {
|
20 |
+
"kindergarten": {
|
21 |
+
"pitch": {"mu": 30.0, "sigma": 29.0}, # Wise & Sloboda (2008)
|
22 |
+
"rhythm": {"mu": 60.0, "sigma": 15.0}, # Demorest & Pfordresher (2015)
|
23 |
+
"timbre": {"mu": 0.65, "sigma": 0.10},
|
24 |
+
},
|
25 |
+
"grade_6": {
|
26 |
+
"pitch": {"mu": 43.0, "sigma": 26.0},
|
27 |
+
"rhythm": {"mu": 75.0, "sigma": 10.0},
|
28 |
+
"timbre": {"mu": 0.75, "sigma": 0.08},
|
29 |
+
},
|
30 |
+
"adult": {
|
31 |
+
"pitch": {"mu": 32.0, "sigma": 19.0},
|
32 |
+
"rhythm": {"mu": 80.0, "sigma": 8.0},
|
33 |
+
"timbre": {"mu": 0.85, "sigma": 0.05},
|
34 |
+
},
|
35 |
+
}
|
36 |
+
|
37 |
+
def sigmoid(z: float) -> float:
|
38 |
+
return 1 / (1 + math.exp(-z))
|
39 |
+
|
40 |
+
def z_score_standardize(raw_metrics: dict, age_group: str) -> dict:
|
41 |
+
if age_group not in STATS:
|
42 |
+
raise ValueError(f"Unknown age_group '{age_group}'")
|
43 |
+
stats = STATS[age_group]
|
44 |
+
out = {}
|
45 |
+
for key, raw in raw_metrics.items():
|
46 |
+
μ, σ = stats[key]["mu"], stats[key]["sigma"]
|
47 |
+
z = (raw - μ) / σ
|
48 |
+
out[key] = round(sigmoid(z), 3)
|
49 |
+
return out
|
50 |
+
|
51 |
+
def run_sagan(wav_path: str) -> dict:
|
52 |
+
"""
|
53 |
+
1) Load audio
|
54 |
+
2) Run SAGANModel.evaluate → returns {'pitch_accuracy', 'rhythm_consistency', 'timbre_score'}
|
55 |
+
3) Return raw dict
|
56 |
+
"""
|
57 |
+
y, sr = librosa.load(wav_path, sr=16000, mono=True)
|
58 |
+
with torch.no_grad():
|
59 |
+
metrics = model.evaluate(y, sr)
|
60 |
+
# Ensure keys:
|
61 |
+
return {
|
62 |
+
"pitch": float(metrics.get("pitch_accuracy", metrics[0])),
|
63 |
+
"rhythm": float(metrics.get("rhythm_consistency", metrics[1])),
|
64 |
+
"timbre": float(metrics.get("timbre_score", metrics[2])),
|
65 |
+
}
|