chatbot / app.py
Pavithiran's picture
Update app.py
3badfd2 verified
raw
history blame
4.53 kB
# import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
import gradio as gr
from huggingface_hub import InferenceClient
from PIL import Image
import io
import base64
client = InferenceClient("meta-llama/Llama-3.2-11B-Vision-Instruct")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
image: Image, # Add image input to the function
):
# Prepare the system message and history for the conversation
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
# Add the current user message
messages.append({"role": "user", "content": message})
# Convert the image to a base64-encoded string
image_bytes = io.BytesIO()
image.save(image_bytes, format='PNG')
image_bytes.seek(0)
image_base64 = base64.b64encode(image_bytes.getvalue()).decode('utf-8')
# Use InferenceClient to handle the image and text input to the model
# Pass the base64-encoded image as the input
response_data = client.text_to_image(images=image_base64, prompt=message) # Pass the base64 string as 'images'
# Check if the response is in the correct format (e.g., image)
try:
# Assuming the response is an image in base64 format
if 'image' in response_data:
image_response = response_data['image']
print("Image Res:")
print(image_response)
# Decode the base64 image back into an image object
image_bytes = base64.b64decode(image_response)
image = Image.open(io.BytesIO(image_bytes))
image.show() # Or return the image in Gradio
return "Image processed successfully" # You can return some confirmation or process the image further
else:
return "Error: No valid image returned from the model."
except Exception as e:
return f"Error processing image: {e}"
# Create the Gradio interface with an image input
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
gr.Image(type="pil", label="Upload an Image"), # Image input for vision tasks
],
)
if __name__ == "__main__":
demo.launch(share=True) # Set share=True to create a public link