Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from PIL import Image | |
import io | |
import base64 | |
client = InferenceClient("meta-llama/Llama-3.2-11B-Vision-Instruct") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
image: Image, # Add image input to the function | |
): | |
# Prepare the system message and history for the conversation | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
# Add the current user message | |
messages.append({"role": "user", "content": message}) | |
# Convert the image to a base64-encoded string | |
image_bytes = io.BytesIO() | |
image.save(image_bytes, format='PNG') | |
image_bytes.seek(0) | |
image_base64 = base64.b64encode(image_bytes.getvalue()).decode('utf-8') | |
# Use InferenceClient to handle the image and text input to the model | |
# Pass the base64-encoded image as the input | |
response_data = client.text_to_image(images=image_base64, prompt=message) # Pass the base64 string as 'images' | |
# Check if the response is in the correct format (e.g., image) | |
try: | |
# Assuming the response is an image in base64 format | |
if 'image' in response_data: | |
image_response = response_data['image'] | |
print("Image Res:") | |
print(image_response) | |
# Decode the base64 image back into an image object | |
image_bytes = base64.b64decode(image_response) | |
image = Image.open(io.BytesIO(image_bytes)) | |
image.show() # Or return the image in Gradio | |
return "Image processed successfully" # You can return some confirmation or process the image further | |
else: | |
return "Error: No valid image returned from the model." | |
except Exception as e: | |
return f"Error processing image: {e}" | |
# Create the Gradio interface with an image input | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
gr.Image(type="pil", label="Upload an Image"), # Image input for vision tasks | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) # Set share=True to create a public link | |