Pavithiran commited on
Commit
2b76ae3
·
verified ·
1 Parent(s): 9a77a5b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -39
app.py CHANGED
@@ -63,14 +63,6 @@
63
  # if __name__ == "__main__":
64
  # demo.launch()
65
 
66
- import gradio as gr
67
- from huggingface_hub import InferenceClient
68
- from PIL import Image
69
- import io
70
- import base64
71
-
72
- client = InferenceClient("meta-llama/Llama-3.2-11B-Vision-Instruct")
73
-
74
  def respond(
75
  message,
76
  history: list[tuple[str, str]],
@@ -78,9 +70,8 @@ def respond(
78
  max_tokens,
79
  temperature,
80
  top_p,
81
- image: Image, # Add image input to the function
82
  ):
83
- # Prepare the system message and history for the conversation
84
  messages = [{"role": "system", "content": system_message}]
85
 
86
  for val in history:
@@ -89,48 +80,31 @@ def respond(
89
  if val[1]:
90
  messages.append({"role": "assistant", "content": val[1]})
91
 
92
- # Add the current user message
93
  messages.append({"role": "user", "content": message})
94
 
95
- # Convert the image to a base64-encoded string
96
  image_bytes = io.BytesIO()
97
  image.save(image_bytes, format='PNG')
98
  image_bytes.seek(0)
99
  image_base64 = base64.b64encode(image_bytes.getvalue()).decode('utf-8')
100
 
101
- # Use InferenceClient to handle the image and text input to the model
102
- # Pass the base64-encoded image as the input
103
- response_data = client.text_to_image(images=image_base64, prompt=message) # Pass the base64 string as 'images'
104
-
105
- # Debug: print the response data to check its content
106
- print("Response Data: ", response_data)
107
-
108
  try:
109
- # Assuming the response is in the correct format, check for image content
 
 
 
 
 
 
110
  if isinstance(response_data, dict) and 'image' in response_data:
 
111
  image_response = response_data['image']
112
- # Decode the base64 image back into an image object
113
  image_bytes = base64.b64decode(image_response)
114
  image = Image.open(io.BytesIO(image_bytes))
115
- image.show() # Or return the image in Gradio
116
  return "Image processed successfully"
117
  else:
118
- return f"Error: Unexpected response format or no image data found. Response: {response_data}"
119
  except Exception as e:
120
  return f"Error processing image: {e}"
121
-
122
- # Create the Gradio interface with an image input
123
- demo = gr.ChatInterface(
124
- respond,
125
- additional_inputs=[
126
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
127
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
128
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
129
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
130
- gr.Image(type="pil", label="Upload an Image"), # Image input for vision tasks
131
- ],
132
- )
133
-
134
- if __name__ == "__main__":
135
- demo.launch(share=True)
136
- # Set share=True to create a public link
 
63
  # if __name__ == "__main__":
64
  # demo.launch()
65
 
 
 
 
 
 
 
 
 
66
  def respond(
67
  message,
68
  history: list[tuple[str, str]],
 
70
  max_tokens,
71
  temperature,
72
  top_p,
73
+ image: Image, # Image input
74
  ):
 
75
  messages = [{"role": "system", "content": system_message}]
76
 
77
  for val in history:
 
80
  if val[1]:
81
  messages.append({"role": "assistant", "content": val[1]})
82
 
83
+ # Add current user message
84
  messages.append({"role": "user", "content": message})
85
 
86
+ # Convert image to base64
87
  image_bytes = io.BytesIO()
88
  image.save(image_bytes, format='PNG')
89
  image_bytes.seek(0)
90
  image_base64 = base64.b64encode(image_bytes.getvalue()).decode('utf-8')
91
 
 
 
 
 
 
 
 
92
  try:
93
+ # Pass the base64 image and prompt
94
+ response_data = client.text_to_image(images=image_base64, prompt=message)
95
+
96
+ # Print out the response data for debugging
97
+ print("Response Data:", response_data)
98
+
99
+ # Check if the response contains an image
100
  if isinstance(response_data, dict) and 'image' in response_data:
101
+ # Decode the base64 image response
102
  image_response = response_data['image']
 
103
  image_bytes = base64.b64decode(image_response)
104
  image = Image.open(io.BytesIO(image_bytes))
105
+ image.show() # Display the image or return it
106
  return "Image processed successfully"
107
  else:
108
+ return f"Error: No valid image found in response. Response: {response_data}"
109
  except Exception as e:
110
  return f"Error processing image: {e}"