# import gradio as gr # from huggingface_hub import InferenceClient # """ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference # """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # def respond( # message, # history: list[tuple[str, str]], # system_message, # max_tokens, # temperature, # top_p, # ): # messages = [{"role": "system", "content": system_message}] # for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # messages.append({"role": "user", "content": message}) # response = "" # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # token = message.choices[0].delta.content # response += token # yield response # """ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface # """ # demo = gr.ChatInterface( # respond, # additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), # ], # ) # if __name__ == "__main__": # demo.launch() import gradio as gr from huggingface_hub import InferenceClient from PIL import Image import io import base64 client = InferenceClient("meta-llama/Llama-3.2-11B-Vision-Instruct") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, image: Image, # Add image input to the function ): # Prepare the system message and history for the conversation messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # Add the current user message messages.append({"role": "user", "content": message}) # Convert the image to a base64-encoded string image_bytes = io.BytesIO() image.save(image_bytes, format='PNG') image_bytes.seek(0) image_base64 = base64.b64encode(image_bytes.getvalue()).decode('utf-8') # Use InferenceClient to handle the image and text input to the model # Pass the base64-encoded image as the input response_data = client.text_to_image(images=image_base64, prompt=message) # Pass the base64 string as 'images' # Check if the response is in the correct format (e.g., image) try: # Assuming the response is an image in base64 format if 'image' in response_data: image_response = response_data['image'] print("Image Res:") print(image_response) # Decode the base64 image back into an image object image_bytes = base64.b64decode(image_response) image = Image.open(io.BytesIO(image_bytes)) image.show() # Or return the image in Gradio return "Image processed successfully" # You can return some confirmation or process the image further else: return "Error: No valid image returned from the model." except Exception as e: return f"Error processing image: {e}" # Create the Gradio interface with an image input demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), gr.Image(type="pil", label="Upload an Image"), # Image input for vision tasks ], ) if __name__ == "__main__": demo.launch(share=True) # Set share=True to create a public link