Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import pytube
|
5 |
+
import tempfile
|
6 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
7 |
+
from pytube import YouTube
|
8 |
+
|
9 |
+
# Set environment variables for Hugging Face Space
|
10 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
|
11 |
+
|
12 |
+
# Model configuration
|
13 |
+
MODEL_NAME = "openai/whisper-large-v3-turbo"
|
14 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
15 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
16 |
+
|
17 |
+
# Setup model and processor
|
18 |
+
def load_model():
|
19 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
20 |
+
MODEL_NAME,
|
21 |
+
torch_dtype=torch_dtype,
|
22 |
+
low_cpu_mem_usage=True,
|
23 |
+
use_safetensors=True
|
24 |
+
)
|
25 |
+
model.to(device)
|
26 |
+
|
27 |
+
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
28 |
+
|
29 |
+
pipe = pipeline(
|
30 |
+
"automatic-speech-recognition",
|
31 |
+
model=model,
|
32 |
+
tokenizer=processor.tokenizer,
|
33 |
+
feature_extractor=processor.feature_extractor,
|
34 |
+
torch_dtype=torch_dtype,
|
35 |
+
device=device,
|
36 |
+
)
|
37 |
+
|
38 |
+
return pipe
|
39 |
+
|
40 |
+
# Load model globally - will be cached
|
41 |
+
pipe = load_model()
|
42 |
+
|
43 |
+
# Transcription function for audio files and microphone
|
44 |
+
def transcribe(audio_path, task="transcribe"):
|
45 |
+
if audio_path is None:
|
46 |
+
return "Please provide an audio input."
|
47 |
+
|
48 |
+
# Set task-specific generation parameters
|
49 |
+
generate_kwargs = {}
|
50 |
+
if task == "translate":
|
51 |
+
generate_kwargs["task"] = "translate"
|
52 |
+
|
53 |
+
# Process the audio
|
54 |
+
try:
|
55 |
+
result = pipe(audio_path, generate_kwargs=generate_kwargs)
|
56 |
+
return result["text"]
|
57 |
+
except Exception as e:
|
58 |
+
return f"Error during transcription: {str(e)}"
|
59 |
+
|
60 |
+
# YouTube video transcription function
|
61 |
+
def yt_transcribe(youtube_url, task="transcribe"):
|
62 |
+
if not youtube_url or not youtube_url.strip():
|
63 |
+
return "Please enter a YouTube URL", "No transcription available."
|
64 |
+
|
65 |
+
try:
|
66 |
+
# Download audio from YouTube
|
67 |
+
yt = YouTube(youtube_url)
|
68 |
+
video = yt.streams.filter(only_audio=True).first()
|
69 |
+
|
70 |
+
# Create a temporary file to store the audio
|
71 |
+
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_file:
|
72 |
+
temp_path = temp_file.name
|
73 |
+
|
74 |
+
# Download the audio to the temporary file
|
75 |
+
video.download(filename=temp_path)
|
76 |
+
|
77 |
+
# Set task-specific generation parameters
|
78 |
+
generate_kwargs = {}
|
79 |
+
if task == "translate":
|
80 |
+
generate_kwargs["task"] = "translate"
|
81 |
+
|
82 |
+
# Process the audio
|
83 |
+
result = pipe(temp_path, generate_kwargs=generate_kwargs)
|
84 |
+
|
85 |
+
# Create an HTML element to display video thumbnail
|
86 |
+
video_id = youtube_url.split("v=")[-1].split("&")[0]
|
87 |
+
thumbnail_url = f"https://img.youtube.com/vi/{video_id}/0.jpg"
|
88 |
+
html_output = f'<div style="display: flex; align-items: center;"><img src="{thumbnail_url}" style="max-width: 200px; margin-right: 20px;"><div><h3>{yt.title}</h3><p>Channel: {yt.author}</p></div></div>'
|
89 |
+
|
90 |
+
# Clean up the temporary file
|
91 |
+
os.unlink(temp_path)
|
92 |
+
|
93 |
+
return html_output, result["text"]
|
94 |
+
except Exception as e:
|
95 |
+
return f"Error processing YouTube video: {str(e)}", "Transcription failed."
|
96 |
+
|
97 |
+
# Create Gradio interfaces
|
98 |
+
mic_transcribe = gr.Interface(
|
99 |
+
fn=transcribe,
|
100 |
+
inputs=[
|
101 |
+
gr.Audio(source="microphone", type="filepath", optional=True),
|
102 |
+
gr.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
103 |
+
],
|
104 |
+
outputs="text",
|
105 |
+
layout="horizontal",
|
106 |
+
theme="huggingface",
|
107 |
+
title="Whisper Large V3 Turbo: Transcribe Audio",
|
108 |
+
description=(
|
109 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
|
110 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
111 |
+
" of arbitrary length."
|
112 |
+
),
|
113 |
+
allow_flagging="never",
|
114 |
+
)
|
115 |
+
|
116 |
+
file_transcribe = gr.Interface(
|
117 |
+
fn=transcribe,
|
118 |
+
inputs=[
|
119 |
+
gr.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
|
120 |
+
gr.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
121 |
+
],
|
122 |
+
outputs="text",
|
123 |
+
layout="horizontal",
|
124 |
+
theme="huggingface",
|
125 |
+
title="Whisper Large V3 Turbo: Transcribe Audio",
|
126 |
+
description=(
|
127 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
|
128 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
129 |
+
" of arbitrary length."
|
130 |
+
),
|
131 |
+
allow_flagging="never",
|
132 |
+
)
|
133 |
+
|
134 |
+
yt_interface = gr.Interface(
|
135 |
+
fn=yt_transcribe,
|
136 |
+
inputs=[
|
137 |
+
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
138 |
+
gr.Radio(["transcribe", "translate"], label="Task", default="transcribe")
|
139 |
+
],
|
140 |
+
outputs=["html", "text"],
|
141 |
+
layout="horizontal",
|
142 |
+
theme="huggingface",
|
143 |
+
title="Whisper Large V3 Turbo: Transcribe YouTube",
|
144 |
+
description=(
|
145 |
+
"Transcribe long-form YouTube videos with the click of a button! Demo uses the OpenAI Whisper checkpoint"
|
146 |
+
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
147 |
+
" arbitrary length."
|
148 |
+
),
|
149 |
+
allow_flagging="never",
|
150 |
+
)
|
151 |
+
|
152 |
+
# Create the tabbed interface
|
153 |
+
demo = gr.Blocks()
|
154 |
+
with demo:
|
155 |
+
gr.TabbedInterface([mic_transcribe, file_transcribe, yt_interface], ["Microphone", "Audio file", "YouTube"])
|
156 |
+
|
157 |
+
# Launch the app
|
158 |
+
if __name__ == "__main__":
|
159 |
+
demo.launch(enable_queue=True)
|