Spaces:
Sleeping
Sleeping
Upload main.py
Browse files- app/main.py +6 -6
app/main.py
CHANGED
@@ -2,10 +2,9 @@
|
|
2 |
# coding: utf-8
|
3 |
from os import listdir
|
4 |
from os.path import isdir
|
5 |
-
from fastapi import FastAPI, HTTPException, Request, responses
|
6 |
from fastapi.middleware.cors import CORSMiddleware
|
7 |
from llama_cpp import Llama
|
8 |
-
from fastapi import Body
|
9 |
|
10 |
from pydantic import BaseModel
|
11 |
from enum import Enum
|
@@ -18,7 +17,7 @@ SAllm = Llama(model_path="/models/final-gemma2b_SA-Q8_0.gguf")#,
|
|
18 |
# n_ctx=2048, # Uncomment to increase the context window
|
19 |
#)
|
20 |
|
21 |
-
FIllm = Llama(model_path="/models/final-gemma2b_FI-Q8_0.gguf")
|
22 |
|
23 |
# def ask(question, max_new_tokens=200):
|
24 |
# output = llm(
|
@@ -108,8 +107,8 @@ def perform_sentiment_analysis(prompt: str = Body(..., embed=True, example="I li
|
|
108 |
@app.post('/FI')
|
109 |
def ask_gemmaFinanceTH(
|
110 |
prompt: str = Body(..., embed=True, example="What's the best way to invest my money"),
|
111 |
-
temperature: float = 0.5,
|
112 |
-
max_new_tokens: int = 200
|
113 |
) -> FI_Response:
|
114 |
"""
|
115 |
Ask a finetuned Gemma a finance-related question, just for fun.
|
@@ -118,9 +117,10 @@ def ask_gemmaFinanceTH(
|
|
118 |
if prompt:
|
119 |
try:
|
120 |
print(f'Asking FI with the question "{prompt}"')
|
|
|
121 |
result = extract_restext(FIllm(prompt, max_tokens=max_new_tokens, temperature=temperature, stop=["###User:", "###Assistant:"], echo=False))
|
122 |
print(f"Result: {result}")
|
123 |
-
return FI_Response(answer=result, question=prompt)
|
124 |
except Exception as e:
|
125 |
return HTTPException(500, FI_Response(code=500, answer=str(e), question=prompt))
|
126 |
else:
|
|
|
2 |
# coding: utf-8
|
3 |
from os import listdir
|
4 |
from os.path import isdir
|
5 |
+
from fastapi import FastAPI, HTTPException, Request, responses, Body
|
6 |
from fastapi.middleware.cors import CORSMiddleware
|
7 |
from llama_cpp import Llama
|
|
|
8 |
|
9 |
from pydantic import BaseModel
|
10 |
from enum import Enum
|
|
|
17 |
# n_ctx=2048, # Uncomment to increase the context window
|
18 |
#)
|
19 |
|
20 |
+
# FIllm = Llama(model_path="/models/final-gemma2b_FI-Q8_0.gguf")
|
21 |
|
22 |
# def ask(question, max_new_tokens=200):
|
23 |
# output = llm(
|
|
|
107 |
@app.post('/FI')
|
108 |
def ask_gemmaFinanceTH(
|
109 |
prompt: str = Body(..., embed=True, example="What's the best way to invest my money"),
|
110 |
+
temperature: float = Body(0.5, embed=True),
|
111 |
+
max_new_tokens: int = Body(200, embed=True)
|
112 |
) -> FI_Response:
|
113 |
"""
|
114 |
Ask a finetuned Gemma a finance-related question, just for fun.
|
|
|
117 |
if prompt:
|
118 |
try:
|
119 |
print(f'Asking FI with the question "{prompt}"')
|
120 |
+
prompt = f"""###User: {prompt}\n###Assistant:"""
|
121 |
result = extract_restext(FIllm(prompt, max_tokens=max_new_tokens, temperature=temperature, stop=["###User:", "###Assistant:"], echo=False))
|
122 |
print(f"Result: {result}")
|
123 |
+
return FI_Response(answer=result, question=prompt, config={"temperature": temperature, "max_new_tokens": max_new_tokens})
|
124 |
except Exception as e:
|
125 |
return HTTPException(500, FI_Response(code=500, answer=str(e), question=prompt))
|
126 |
else:
|