Payce commited on
Commit
8871f8e
·
1 Parent(s): 45776df

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -0
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import gradio as gr
3
+
4
+ import torch
5
+ from transformers import DonutProcessor, VisionEncoderDecoderModel
6
+
7
+
8
+ processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
9
+ model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
10
+
11
+ device = "cuda" if torch.cuda.is_available() else "cpu"
12
+ model.to(device)
13
+
14
+ def process_document(image):
15
+ # prepare encoder inputs
16
+ pixel_values = processor(image, return_tensors="pt").pixel_values
17
+
18
+ # prepare decoder inputs
19
+ task_prompt = "<s_cord-v2>"
20
+ decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
21
+
22
+ # generate answer
23
+ outputs = model.generate(
24
+ pixel_values.to(device),
25
+ decoder_input_ids=decoder_input_ids.to(device),
26
+ max_length=model.decoder.config.max_position_embeddings,
27
+ early_stopping=True,
28
+ pad_token_id=processor.tokenizer.pad_token_id,
29
+ eos_token_id=processor.tokenizer.eos_token_id,
30
+ use_cache=True,
31
+ num_beams=1,
32
+ bad_words_ids=[[processor.tokenizer.unk_token_id]],
33
+ return_dict_in_generate=True,
34
+ )
35
+
36
+ # postprocess
37
+ sequence = processor.batch_decode(outputs.sequences)[0]
38
+ sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
39
+ sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
40
+
41
+ return processor.token2json(sequence)
42
+
43
+ demo = gr.Interface(
44
+ fn=process_document,
45
+ inputs="image",
46
+ outputs="json",
47
+ title="Document Parsing",
48
+ description="",
49
+ article="",
50
+ examples=[],
51
+ server_name="0.0.0.0",
52
+ cache_examples=False)
53
+
54
+ demo.launch(enable_queue=True,)