Spaces:
Runtime error
Runtime error
Pclanglais
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -24,18 +24,24 @@ css = """
|
|
24 |
.manuscript {
|
25 |
display: flex;
|
26 |
margin-bottom: 20px;
|
|
|
27 |
}
|
28 |
.annotation {
|
29 |
-
width:
|
30 |
padding-right: 20px;
|
31 |
color: grey;
|
32 |
font-style: italic;
|
|
|
33 |
}
|
34 |
.content {
|
35 |
width: 70%;
|
36 |
}
|
37 |
-
|
38 |
margin-top: 0;
|
|
|
|
|
|
|
|
|
39 |
}
|
40 |
</style>
|
41 |
"""
|
@@ -104,11 +110,11 @@ def transform_chunks(marianne_segmentation):
|
|
104 |
|
105 |
html_output = []
|
106 |
for _, row in marianne_segmentation.iterrows():
|
107 |
-
entity_group = row['entity_group']
|
108 |
word = row['word']
|
109 |
|
110 |
if entity_group == 'title':
|
111 |
-
html_output.append(f'<div class="manuscript"><div class="annotation">{entity_group}</div><div class="content"><
|
112 |
else:
|
113 |
html_output.append(f'<div class="manuscript"><div class="annotation">{entity_group}</div><div class="content">{word}</div></div>')
|
114 |
|
@@ -131,7 +137,7 @@ class MistralChatBot:
|
|
131 |
batch_prompts = [editorial_text]
|
132 |
|
133 |
out = token_classifier(batch_prompts)
|
134 |
-
out = transform_chunks(out
|
135 |
generated_text = f'{css}<h2 style="text-align:center">Réponse</h2>\n<div class="generation">{out}</div>'
|
136 |
return generated_text
|
137 |
|
|
|
24 |
.manuscript {
|
25 |
display: flex;
|
26 |
margin-bottom: 20px;
|
27 |
+
align-items: flex-start; /* Align items to the top */
|
28 |
}
|
29 |
.annotation {
|
30 |
+
width: 10%;
|
31 |
padding-right: 20px;
|
32 |
color: grey;
|
33 |
font-style: italic;
|
34 |
+
padding-top: 5px; /* Add some top padding to align with the title */
|
35 |
}
|
36 |
.content {
|
37 |
width: 70%;
|
38 |
}
|
39 |
+
h2 {
|
40 |
margin-top: 0;
|
41 |
+
margin-bottom: 10px; /* Add some bottom margin for spacing */
|
42 |
+
}
|
43 |
+
.title-content {
|
44 |
+
margin-top: -5px; /* Negative margin to offset the padding of annotation */
|
45 |
}
|
46 |
</style>
|
47 |
"""
|
|
|
110 |
|
111 |
html_output = []
|
112 |
for _, row in marianne_segmentation.iterrows():
|
113 |
+
entity_group = "<" + capitalize(row['entity_group']) + ">"
|
114 |
word = row['word']
|
115 |
|
116 |
if entity_group == 'title':
|
117 |
+
html_output.append(f'<div class="manuscript"><div class="annotation">{entity_group}</div><div class="content title-content"><h2>{word}</h2></div></div>')
|
118 |
else:
|
119 |
html_output.append(f'<div class="manuscript"><div class="annotation">{entity_group}</div><div class="content">{word}</div></div>')
|
120 |
|
|
|
137 |
batch_prompts = [editorial_text]
|
138 |
|
139 |
out = token_classifier(batch_prompts)
|
140 |
+
out = transform_chunks(pd.concat(out))
|
141 |
generated_text = f'{css}<h2 style="text-align:center">Réponse</h2>\n<div class="generation">{out}</div>'
|
142 |
return generated_text
|
143 |
|