import transformers import re from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM, pipeline import torch import gradio as gr import json import os import shutil import requests import pandas as pd # Define the device device = "cuda" if torch.cuda.is_available() else "cpu" editorial_model = "PleIAs/Estienne" token_classifier = pipeline( "token-classification", model=editorial_model, aggregation_strategy="simple", device=device ) tokenizer = AutoTokenizer.from_pretrained(editorial_model, model_max_length=512) css = """ """ # Preprocess the 'word' column def preprocess_text(text): # Remove HTML tags text = re.sub(r'<[^>]+>', '', text) # Replace newlines with spaces text = re.sub(r'\n', ' ', text) # Replace multiple spaces with a single space text = re.sub(r'\s+', ' ', text) # Strip leading and trailing whitespace return text.strip() def split_text(text, max_tokens=500): # Split the text by newline characters parts = text.split("\n") chunks = [] current_chunk = "" for part in parts: # Add part to current chunk if current_chunk: temp_chunk = current_chunk + "\n" + part else: temp_chunk = part # Tokenize the temporary chunk num_tokens = len(tokenizer.tokenize(temp_chunk)) if num_tokens <= max_tokens: current_chunk = temp_chunk else: if current_chunk: chunks.append(current_chunk) current_chunk = part if current_chunk: chunks.append(current_chunk) # If no newlines were found and still exceeding max_tokens, split further if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens: long_text = chunks[0] chunks = [] while len(tokenizer.tokenize(long_text)) > max_tokens: split_point = len(long_text) // 2 while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]): split_point += 1 # Ensure split_point does not go out of range if split_point >= len(long_text): split_point = len(long_text) - 1 chunks.append(long_text[:split_point].strip()) long_text = long_text[split_point:].strip() if long_text: chunks.append(long_text) return chunks def transform_chunks(marianne_segmentation): marianne_segmentation = pd.DataFrame(marianne_segmentation) marianne_segmentation = marianne_segmentation[marianne_segmentation['entity_group'] != 'separator'] marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).str.replace('¶', '\n', regex=False) marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).apply(preprocess_text) marianne_segmentation = marianne_segmentation[marianne_segmentation['word'].notna() & (marianne_segmentation['word'] != '') & (marianne_segmentation['word'] != ' ')] html_output = [] for _, row in marianne_segmentation.iterrows(): entity_group = "<" + capitalize(row['entity_group']) + ">" word = row['word'] if entity_group == 'title': html_output.append(f'
{entity_group}

{word}

') else: html_output.append(f'
{entity_group}
{word}
') final_html = '\n'.join(html_output) return final_html # Class to encapsulate the Falcon chatbot class MistralChatBot: def __init__(self, system_prompt="Le dialogue suivant est une conversation"): self.system_prompt = system_prompt def predict(self, user_message): editorial_text = re.sub("\n", " ¶ ", user_message) num_tokens = len(tokenizer.tokenize(editorial_text)) if num_tokens > 500: batch_prompts = split_text(editorial_text, max_tokens=500) else: batch_prompts = [editorial_text] out = token_classifier(batch_prompts) out = transform_chunks(pd.concat(out)) generated_text = f'{css}

Réponse

\n
{out}
' return generated_text # Create the Falcon chatbot instance mistral_bot = MistralChatBot() # Define the Gradio interface title = "Éditorialisation" description = "Un outil expérimental d'identification de la structure du texte à partir d'un encoder (Deberta)" examples = [ [ "Qui peut bénéficier de l'AIP?", # user_message 0.7 # temperature ] ] demo = gr.Blocks() with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo: gr.HTML("""

Correction d'OCR

""") text_input = gr.Textbox(label="Votre texte.", type="text", lines=1) text_button = gr.Button("Identifier les structures éditoriales") text_output = gr.HTML(label="Le texte corrigé") text_button.click(mistral_bot.predict, inputs=text_input, outputs=[text_output]) if __name__ == "__main__": demo.queue().launch()