Spaces:
Sleeping
Sleeping
Update session_analysis.py
Browse files- session_analysis.py +433 -31
session_analysis.py
CHANGED
@@ -1,44 +1,446 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
def show_session_analysis():
|
6 |
-
st.title("Session Analysis")
|
7 |
|
8 |
-
#
|
9 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
upload_type = st.radio(
|
12 |
-
"Select
|
13 |
-
["Audio", "Video", "Text", "
|
14 |
)
|
15 |
|
16 |
-
if upload_type in ["Audio", "Video"]:
|
17 |
-
file = st.file_uploader(
|
|
|
|
|
|
|
18 |
if file:
|
19 |
-
|
20 |
|
21 |
-
elif upload_type == "Text":
|
22 |
-
file = st.file_uploader("Upload
|
23 |
if file:
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
st.write(f"
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import google.generativeai as genai
|
6 |
+
from datetime import datetime
|
7 |
+
import json
|
8 |
+
import numpy as np
|
9 |
+
from docx import Document
|
10 |
+
import re
|
11 |
+
from prompts import SESSION_EVALUATION_PROMPT, MI_SYSTEM_PROMPT
|
12 |
|
13 |
def show_session_analysis():
|
14 |
+
st.title("MI Session Analysis Dashboard")
|
15 |
|
16 |
+
# Initialize session state for analysis results
|
17 |
+
if 'analysis_results' not in st.session_state:
|
18 |
+
st.session_state.analysis_results = None
|
19 |
+
if 'current_transcript' not in st.session_state:
|
20 |
+
st.session_state.current_transcript = None
|
21 |
+
|
22 |
+
# Main layout
|
23 |
+
col1, col2 = st.columns([1, 2])
|
24 |
+
|
25 |
+
with col1:
|
26 |
+
show_upload_section()
|
27 |
+
|
28 |
+
with col2:
|
29 |
+
if st.session_state.analysis_results:
|
30 |
+
show_analysis_results()
|
31 |
+
|
32 |
+
def show_upload_section():
|
33 |
+
st.header("Session Data Upload")
|
34 |
|
35 |
upload_type = st.radio(
|
36 |
+
"Select Input Method:",
|
37 |
+
["Audio Recording", "Video Recording", "Text Transcript", "Session Notes", "Previous Session Data"]
|
38 |
)
|
39 |
|
40 |
+
if upload_type in ["Audio Recording", "Video Recording"]:
|
41 |
+
file = st.file_uploader(
|
42 |
+
f"Upload {upload_type}",
|
43 |
+
type=["wav", "mp3", "mp4"] if upload_type == "Audio Recording" else ["mp4", "avi", "mov"]
|
44 |
+
)
|
45 |
if file:
|
46 |
+
process_media_file(file, upload_type)
|
47 |
|
48 |
+
elif upload_type == "Text Transcript":
|
49 |
+
file = st.file_uploader("Upload Transcript", type=["txt", "doc", "docx", "json"])
|
50 |
if file:
|
51 |
+
process_text_file(file)
|
52 |
+
|
53 |
+
elif upload_type == "Session Notes":
|
54 |
+
show_manual_input_form()
|
55 |
+
|
56 |
+
else: # Previous Session Data
|
57 |
+
show_previous_sessions_selector()
|
58 |
+
|
59 |
+
def process_media_file(file, type):
|
60 |
+
st.write(f"Processing {type}...")
|
61 |
+
|
62 |
+
# Add processing status
|
63 |
+
status = st.empty()
|
64 |
+
progress_bar = st.progress(0)
|
65 |
+
|
66 |
+
try:
|
67 |
+
# Simulated processing steps
|
68 |
+
for i in range(5):
|
69 |
+
status.text(f"Step {i+1}/5: " + get_processing_step_name(i))
|
70 |
+
progress_bar.progress((i + 1) * 20)
|
71 |
+
|
72 |
+
# Generate transcript
|
73 |
+
transcript = generate_transcript(file)
|
74 |
+
if transcript:
|
75 |
+
st.session_state.current_transcript = transcript
|
76 |
+
analyze_session_content(transcript)
|
77 |
+
|
78 |
+
except Exception as e:
|
79 |
+
st.error(f"Error processing file: {str(e)}")
|
80 |
+
finally:
|
81 |
+
status.empty()
|
82 |
+
progress_bar.empty()
|
83 |
+
|
84 |
+
def get_processing_step_name(step):
|
85 |
+
steps = [
|
86 |
+
"Loading media file",
|
87 |
+
"Converting to audio",
|
88 |
+
"Performing speech recognition",
|
89 |
+
"Generating transcript",
|
90 |
+
"Preparing analysis"
|
91 |
+
]
|
92 |
+
return steps[step]
|
93 |
+
|
94 |
+
def process_text_file(file):
|
95 |
+
try:
|
96 |
+
if file.name.endswith('.json'):
|
97 |
+
content = json.loads(file.read().decode())
|
98 |
+
transcript = extract_transcript_from_json(content)
|
99 |
+
elif file.name.endswith('.docx'):
|
100 |
+
doc = Document(file)
|
101 |
+
transcript = '\n'.join([paragraph.text for paragraph in doc.paragraphs])
|
102 |
+
else:
|
103 |
+
transcript = file.read().decode()
|
104 |
+
|
105 |
+
if transcript:
|
106 |
+
st.session_state.current_transcript = transcript
|
107 |
+
analyze_session_content(transcript)
|
108 |
+
|
109 |
+
except Exception as e:
|
110 |
+
st.error(f"Error processing file: {str(e)}")
|
111 |
+
|
112 |
+
def show_manual_input_form():
|
113 |
+
st.subheader("Session Details")
|
114 |
+
|
115 |
+
# Session metadata
|
116 |
+
session_date = st.date_input("Session Date", datetime.now())
|
117 |
+
session_duration = st.number_input("Session Duration (minutes)", min_value=1, max_value=180, value=50)
|
118 |
+
|
119 |
+
# Client information
|
120 |
+
client_id = st.text_input("Client ID (optional)")
|
121 |
+
session_number = st.number_input("Session Number", min_value=1, value=1)
|
122 |
+
|
123 |
+
# Session content
|
124 |
+
session_notes = st.text_area(
|
125 |
+
"Session Notes",
|
126 |
+
height=300,
|
127 |
+
help="Enter detailed session notes including key dialogues, interventions, and observations"
|
128 |
+
)
|
129 |
+
|
130 |
+
# Target behaviors
|
131 |
+
target_behaviors = st.text_area(
|
132 |
+
"Target Behaviors/Goals",
|
133 |
+
height=100,
|
134 |
+
help="Enter the specific behaviors or goals discussed in the session"
|
135 |
+
)
|
136 |
+
|
137 |
+
# MI specific elements
|
138 |
+
st.subheader("MI Elements")
|
139 |
+
change_talk = st.text_area("Observed Change Talk")
|
140 |
+
sustain_talk = st.text_area("Observed Sustain Talk")
|
141 |
+
|
142 |
+
if st.button("Analyze Session"):
|
143 |
+
session_data = compile_session_data(
|
144 |
+
session_date, session_duration, client_id, session_number,
|
145 |
+
session_notes, target_behaviors, change_talk, sustain_talk
|
146 |
+
)
|
147 |
+
analyze_session_content(session_data)
|
148 |
+
|
149 |
+
def analyze_session_content(content):
|
150 |
+
try:
|
151 |
+
# Configure Gemini model
|
152 |
+
model = genai.GenerativeModel('gemini-pro')
|
153 |
+
|
154 |
+
# Prepare analysis prompt
|
155 |
+
analysis_prompt = f"""
|
156 |
+
Analyze the following therapy session using MI principles and provide a comprehensive evaluation:
|
157 |
+
|
158 |
+
Session Content:
|
159 |
+
{content}
|
160 |
+
|
161 |
+
Please provide detailed analysis including:
|
162 |
+
1. MI Adherence Assessment:
|
163 |
+
- OARS implementation
|
164 |
+
- Change talk identification
|
165 |
+
- Resistance management
|
166 |
+
- MI spirit adherence
|
167 |
+
|
168 |
+
2. Technical Skills Evaluation:
|
169 |
+
- Reflection quality and frequency
|
170 |
+
- Question-to-reflection ratio
|
171 |
+
- Open vs. closed questions
|
172 |
+
- Affirmations and summaries
|
173 |
+
|
174 |
+
3. Client Language Analysis:
|
175 |
+
- Change talk instances
|
176 |
+
- Sustain talk patterns
|
177 |
+
- Commitment language
|
178 |
+
- Resistance patterns
|
179 |
+
|
180 |
+
4. Session Flow Analysis:
|
181 |
+
- Engagement level
|
182 |
+
- Focus maintenance
|
183 |
+
- Evocation quality
|
184 |
+
- Planning effectiveness
|
185 |
+
|
186 |
+
5. Recommendations:
|
187 |
+
- Strength areas
|
188 |
+
- Growth opportunities
|
189 |
+
- Suggested interventions
|
190 |
+
- Next session planning
|
191 |
+
|
192 |
+
Format the analysis with clear sections and specific examples from the session.
|
193 |
+
"""
|
194 |
+
|
195 |
+
# Generate analysis
|
196 |
+
response = model.generate_content(analysis_prompt)
|
197 |
+
|
198 |
+
# Process and structure the analysis results
|
199 |
+
analysis_results = process_analysis_results(response.text)
|
200 |
+
|
201 |
+
# Store results in session state
|
202 |
+
st.session_state.analysis_results = analysis_results
|
203 |
+
|
204 |
+
# Show success message
|
205 |
+
st.success("Analysis completed successfully!")
|
206 |
+
|
207 |
+
except Exception as e:
|
208 |
+
st.error(f"Error during analysis: {str(e)}")
|
209 |
+
|
210 |
+
def process_analysis_results(raw_analysis):
|
211 |
+
"""Process and structure the analysis results"""
|
212 |
+
# Parse the raw analysis text and extract structured data
|
213 |
+
sections = extract_analysis_sections(raw_analysis)
|
214 |
+
|
215 |
+
# Calculate metrics
|
216 |
+
metrics = calculate_mi_metrics(raw_analysis)
|
217 |
+
|
218 |
+
return {
|
219 |
+
"raw_analysis": raw_analysis,
|
220 |
+
"structured_sections": sections,
|
221 |
+
"metrics": metrics,
|
222 |
+
"timestamp": datetime.now().isoformat()
|
223 |
+
}
|
224 |
+
|
225 |
+
def show_analysis_results():
|
226 |
+
"""Display comprehensive analysis results"""
|
227 |
+
if not st.session_state.analysis_results:
|
228 |
+
return
|
229 |
+
|
230 |
+
results = st.session_state.analysis_results
|
231 |
+
|
232 |
+
# Top-level metrics
|
233 |
+
show_mi_metrics_dashboard(results['metrics'])
|
234 |
+
|
235 |
+
# Detailed analysis sections
|
236 |
+
tabs = st.tabs([
|
237 |
+
"MI Adherence",
|
238 |
+
"Technical Skills",
|
239 |
+
"Client Language",
|
240 |
+
"Session Flow",
|
241 |
+
"Recommendations"
|
242 |
+
])
|
243 |
+
|
244 |
+
with tabs[0]:
|
245 |
+
show_mi_adherence_analysis(results)
|
246 |
+
|
247 |
+
with tabs[1]:
|
248 |
+
show_technical_skills_analysis(results)
|
249 |
+
|
250 |
+
with tabs[2]:
|
251 |
+
show_client_language_analysis(results)
|
252 |
+
|
253 |
+
with tabs[3]:
|
254 |
+
show_session_flow_analysis(results)
|
255 |
+
|
256 |
+
with tabs[4]:
|
257 |
+
show_recommendations(results)
|
258 |
+
|
259 |
+
def show_mi_metrics_dashboard(metrics):
|
260 |
+
st.subheader("MI Performance Dashboard")
|
261 |
+
|
262 |
+
col1, col2, col3, col4 = st.columns(4)
|
263 |
+
|
264 |
+
with col1:
|
265 |
+
show_metric_card(
|
266 |
+
"MI Spirit Score",
|
267 |
+
metrics.get('mi_spirit_score', 0),
|
268 |
+
"0-5 scale"
|
269 |
+
)
|
270 |
+
|
271 |
+
with col2:
|
272 |
+
show_metric_card(
|
273 |
+
"Change Talk Ratio",
|
274 |
+
metrics.get('change_talk_ratio', 0),
|
275 |
+
"Change vs Sustain"
|
276 |
+
)
|
277 |
+
|
278 |
+
with col3:
|
279 |
+
show_metric_card(
|
280 |
+
"Reflection Ratio",
|
281 |
+
metrics.get('reflection_ratio', 0),
|
282 |
+
"Reflections/Questions"
|
283 |
+
)
|
284 |
+
|
285 |
+
with col4:
|
286 |
+
show_metric_card(
|
287 |
+
"Overall Adherence",
|
288 |
+
metrics.get('overall_adherence', 0),
|
289 |
+
"Percentage"
|
290 |
+
)
|
291 |
+
|
292 |
+
def show_metric_card(title, value, subtitle):
|
293 |
+
st.markdown(
|
294 |
+
f"""
|
295 |
+
<div style="border:1px solid #ccc; padding:10px; border-radius:5px; text-align:center;">
|
296 |
+
<h3>{title}</h3>
|
297 |
+
<h2>{value:.2f}</h2>
|
298 |
+
<p>{subtitle}</p>
|
299 |
+
</div>
|
300 |
+
""",
|
301 |
+
unsafe_allow_html=True
|
302 |
+
)
|
303 |
+
|
304 |
+
def show_mi_adherence_analysis(results):
|
305 |
+
st.subheader("MI Adherence Analysis")
|
306 |
+
|
307 |
+
# OARS Implementation
|
308 |
+
st.write("### OARS Implementation")
|
309 |
+
show_oars_chart(results['metrics'].get('oars_metrics', {}))
|
310 |
+
|
311 |
+
# MI Spirit Components
|
312 |
+
st.write("### MI Spirit Components")
|
313 |
+
show_mi_spirit_chart(results['metrics'].get('mi_spirit_metrics', {}))
|
314 |
+
|
315 |
+
# Detailed breakdown
|
316 |
+
st.write("### Detailed Analysis")
|
317 |
+
st.markdown(results['structured_sections'].get('mi_adherence', ''))
|
318 |
+
|
319 |
+
def show_technical_skills_analysis(results):
|
320 |
+
st.subheader("Technical Skills Analysis")
|
321 |
+
|
322 |
+
# Question Analysis
|
323 |
+
col1, col2 = st.columns(2)
|
324 |
+
|
325 |
+
with col1:
|
326 |
+
show_question_type_chart(results['metrics'].get('question_metrics', {}))
|
327 |
+
|
328 |
+
with col2:
|
329 |
+
show_reflection_depth_chart(results['metrics'].get('reflection_metrics', {}))
|
330 |
+
|
331 |
+
# Detailed analysis
|
332 |
+
st.markdown(results['structured_sections'].get('technical_skills', ''))
|
333 |
+
|
334 |
+
def show_client_language_analysis(results):
|
335 |
+
st.subheader("Client Language Analysis")
|
336 |
+
|
337 |
+
# Change Talk Timeline
|
338 |
+
show_change_talk_timeline(results['metrics'].get('change_talk_timeline', []))
|
339 |
+
|
340 |
+
# Language Categories
|
341 |
+
show_language_categories_chart(results['metrics'].get('language_categories', {}))
|
342 |
+
|
343 |
+
# Detailed analysis
|
344 |
+
st.markdown(results['structured_sections'].get('client_language', ''))
|
345 |
+
|
346 |
+
def show_session_flow_analysis(results):
|
347 |
+
st.subheader("Session Flow Analysis")
|
348 |
+
|
349 |
+
# Session Flow Timeline
|
350 |
+
show_session_flow_timeline(results['metrics'].get('session_flow', []))
|
351 |
+
|
352 |
+
# Engagement Metrics
|
353 |
+
show_engagement_metrics(results['metrics'].get('engagement_metrics', {}))
|
354 |
+
|
355 |
+
# Detailed analysis
|
356 |
+
st.markdown(results['structured_sections'].get('session_flow', ''))
|
357 |
+
|
358 |
+
def show_recommendations(results):
|
359 |
+
st.subheader("Recommendations and Next Steps")
|
360 |
+
|
361 |
+
col1, col2 = st.columns(2)
|
362 |
+
|
363 |
+
with col1:
|
364 |
+
st.write("### Strengths")
|
365 |
+
strengths = results['structured_sections'].get('strengths', [])
|
366 |
+
for strength in strengths:
|
367 |
+
st.markdown(f"✓ {strength}")
|
368 |
+
|
369 |
+
with col2:
|
370 |
+
st.write("### Growth Areas")
|
371 |
+
growth_areas = results['structured_sections'].get('growth_areas', [])
|
372 |
+
for area in growth_areas:
|
373 |
+
st.markdown(f"→ {area}")
|
374 |
+
|
375 |
+
st.write("### Suggested Interventions")
|
376 |
+
st.markdown(results['structured_sections'].get('suggested_interventions', ''))
|
377 |
+
|
378 |
+
st.write("### Next Session Planning")
|
379 |
+
st.markdown(results['structured_sections'].get('next_session_plan', ''))
|
380 |
+
|
381 |
+
# Utility functions for charts and visualizations
|
382 |
+
def show_oars_chart(oars_metrics):
|
383 |
+
# Create OARS radar chart using plotly
|
384 |
+
categories = ['Open Questions', 'Affirmations', 'Reflections', 'Summaries']
|
385 |
+
values = [
|
386 |
+
oars_metrics.get('open_questions', 0),
|
387 |
+
oars_metrics.get('affirmations', 0),
|
388 |
+
oars_metrics.get('reflections', 0),
|
389 |
+
oars_metrics.get('summaries', 0)
|
390 |
+
]
|
391 |
+
|
392 |
+
fig = go.Figure(data=go.Scatterpolar(
|
393 |
+
r=values,
|
394 |
+
theta=categories,
|
395 |
+
fill='toself'
|
396 |
+
))
|
397 |
+
|
398 |
+
fig.update_layout(
|
399 |
+
polar=dict(
|
400 |
+
radialaxis=dict(
|
401 |
+
visible=True,
|
402 |
+
range=[0, max(values) + 1]
|
403 |
+
)),
|
404 |
+
showlegend=False
|
405 |
+
)
|
406 |
+
|
407 |
+
st.plotly_chart(fig)
|
408 |
+
|
409 |
+
# Add more visualization functions as needed...
|
410 |
+
|
411 |
+
def save_analysis_results():
|
412 |
+
"""Save analysis results to file"""
|
413 |
+
if st.session_state.analysis_results:
|
414 |
+
try:
|
415 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
416 |
+
filename = f"analysis_results_{timestamp}.json"
|
417 |
+
|
418 |
+
with open(filename, "w") as f:
|
419 |
+
json.dump(st.session_state.analysis_results, f, indent=4)
|
420 |
+
|
421 |
+
st.success(f"Analysis results saved to {filename}")
|
422 |
+
|
423 |
+
except Exception as e:
|
424 |
+
st.error(f"Error saving analysis results: {str(e)}")
|
425 |
+
|
426 |
+
def show_export_options():
|
427 |
+
st.sidebar.subheader("Export Options")
|
428 |
+
|
429 |
+
if st.sidebar.button("Export Analysis Report"):
|
430 |
+
save_analysis_results()
|
431 |
+
|
432 |
+
report_format = st.sidebar.selectbox(
|
433 |
+
"Report Format",
|
434 |
+
["PDF", "DOCX", "JSON"]
|
435 |
+
)
|
436 |
+
|
437 |
+
if st.sidebar.button("Generate Report"):
|
438 |
+
generate_report(report_format)
|
439 |
+
|
440 |
+
def generate_report(format):
|
441 |
+
"""Generate analysis report in specified format"""
|
442 |
+
# Add report generation logic here
|
443 |
+
st.info(f"Generating {format} report... (Feature coming soon)")
|
444 |
+
|
445 |
+
if __name__ == "__main__":
|
446 |
+
show_session_analysis()
|