import os import io import openai import gradio as gr import IPython.display from PIL import Image import base64 from dotenv import load_dotenv, find_dotenv _ = load_dotenv(find_dotenv()) # read local .env file hf_api_key ='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' import requests def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.content # Helper function import requests, json openai.api_key = "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" def predict(message, history): history_openai_format = [] for human, assistant in history: history_openai_format.append({"role": "user", "content": human }) history_openai_format.append({"role": "assistant", "content":assistant}) history_openai_format.append({"role": "user", "content": message}) response = openai.ChatCompletion.create( model='gpt-3.5-turbo', messages= history_openai_format, temperature=1.0, stream=True ) partial_message = "" for chunk in response: if len(chunk['choices'][0]['delta']) != 0: partial_message = partial_message + chunk['choices'][0]['delta']['content'] yield partial_message A1 = gr.ChatInterface(predict, title="PeachTalk+", description="An AI Powered Chatbot with Computer Vision and Image Generation Capabilities Currently Under Development By Peach State Innovation and Technology. Ask Me About Question About Anything...From Georgia and Beyond...And I'll Give You An Answer!", theme= gr.themes.Glass(primary_hue="amber", neutral_hue="lime"), retry_btn=None, clear_btn="Clear") A2 = gr.load( "huggingface/google/vit-base-patch16-224", title="Upon Further Review - AI Vision and Identity Technology", theme= gr.themes.Glass(primary_hue="amber", neutral_hue="lime")) A3 = gr.load("huggingface/google/vit-base-patch16-224") pcp = gr.TabbedInterface([A1, A2], ["Chat", "Describe", "Create"], theme= gr.themes.Glass(primary_hue="amber", neutral_hue="lime")) pcp.queue().launch()