Spaces:
Runtime error
Runtime error
File size: 26,587 Bytes
28ef8c8 d93da55 28ef8c8 9454822 28ef8c8 9120f67 98d76bd 28ef8c8 98d76bd f6923bc 0b963d7 9120f67 28ef8c8 9120f67 28ef8c8 387678c a3e795a 98d76bd 28ef8c8 e49dc64 28ef8c8 e49dc64 28ef8c8 9120f67 f6923bc 28ef8c8 d93da55 28ef8c8 d93da55 9120f67 28ef8c8 b472580 28ef8c8 0b963d7 d93da55 b472580 d57569a 9120f67 0b963d7 b472580 d93da55 d57569a 28ef8c8 d93da55 9120f67 28ef8c8 9120f67 d93da55 28ef8c8 d93da55 9120f67 d93da55 9120f67 d93da55 9120f67 d93da55 28ef8c8 d93da55 28ef8c8 d93da55 28ef8c8 d93da55 b472580 28ef8c8 b472580 d93da55 28ef8c8 b472580 d93da55 b472580 5bb1aa7 d93da55 5bb1aa7 0b963d7 d93da55 e49dc64 d93da55 e49dc64 28ef8c8 ce580ca e49dc64 d93da55 e49dc64 b472580 d57569a b472580 d93da55 b472580 d93da55 b472580 d93da55 b472580 d93da55 b472580 f6923bc 28ef8c8 d93da55 9454822 d57569a b472580 d57569a b472580 d57569a b472580 d57569a b472580 d57569a 28ef8c8 d93da55 28ef8c8 d93da55 28ef8c8 d57569a d93da55 d57569a d93da55 d57569a d93da55 43411bf d93da55 d57569a d93da55 d57569a d93da55 28ef8c8 d93da55 28ef8c8 d93da55 28ef8c8 4dac01b 28ef8c8 d93da55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 |
# β
Optimized Triage Chatbot Code for Hugging Face Space (NVIDIA T4 GPU)
# Covers: Memory optimizations, 4-bit quantization, lazy loading, FAISS caching, faster inference, safe Gradio UI
# Includes: Proper Gradio history handling, response cleaning, safety checks
import os
import time
import torch
import logging
import gradio as gr
import psutil
from datetime import datetime
from huggingface_hub import login
from dotenv import load_dotenv
import aiohttp
import asyncio
from googlesearch import search
from apscheduler.schedulers.background import BackgroundScheduler
from transformers import (
AutoTokenizer, AutoModelForCausalLM,
BitsAndBytesConfig
)
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
# Logging Setup
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("PearlyBot")
# ===========================
# π§ SECRETS MANAGER
# ===========================
class SecretsManager:
@staticmethod
def setup():
load_dotenv()
creds = {
'HF_TOKEN': os.getenv('HF_TOKEN'),
}
if creds['HF_TOKEN']:
login(token=creds['HF_TOKEN'])
logger.info("π Logged in to Hugging Face")
return creds
# ===========================
# π§ MEDICAL CHATBOT CORE
# ===========================
class MedicalTriageBot:
def __init__(self):
self.tokenizer = None
self.model = None
self.embeddings = None
self.vector_store = None
self.chunk_size = 512
self.chunk_overlap = 128
self.num_relevant_chunks = 5
self.last_interaction_time = time.time()
self.interaction_cooldown = 1.0
self.nhs_api_url = "https://api.nhs.uk/conditions/"
self.safety_phrases = [
"999", "111", "emergency", "GP", "NHS",
"consult a doctor", "seek medical attention"
]
self.triage_levels = {
'Emergency': [
'pediatric', 'stroke', 'cardiac', 'unconscious', 'suicidal',
'psychotic', 'seizure', 'overdose', 'cyanosis'
],
'Urgent': [
'pregnancy', 'fracture', 'asthma', 'withdrawal',
'postpartum', 'harm thoughts', 'panic attack'
],
'GP Care': [
'eczema', 'ocd', 'depression', 'anxiety', 'PTSD',
'bipolar', 'migraine', 'chronic'
],
'Self-Care': [
'cold', 'rash', 'stress', 'mild', 'situational',
'acne', 'insomnia'
]
}
self.current_case = None
self.location_services = {
"London": {"A&E": ["St Thomas' Hospital", "Royal London Hospital"],
"Urgent Care": ["UCLH Urgent Care Centre"]},
"Manchester": {"A&E": ["Manchester Royal Infirmary"]}
}
self.base_questions = [
("duration", "How long have you experienced this?"),
("severity", "On a scale of 1-10, how severe is it?"),
("emergency_signs", "Any difficulty breathing, chest pain, or confusion?")
]
async def query_nhs_api(self, symptom: str):
"""Dynamic API query for latest NHS guidelines"""
try:
async with aiohttp.ClientSession() as session:
async with session.get(f"{self.nhs_api_url}{symptom}") as response:
if response.status == 200:
return await response.json()
return None
except Exception as e:
logger.error(f"NHS API Error: {e}")
return None
def web_fallback(self, query: str):
"""Google search fallback for NHS resources"""
try:
NHS_SITES = ["site:nhs.uk", "site:gov.uk"]
return [j for j in search(f"{query} {' '.join(NHS_SITES)}", num=3, stop=3)]
except Exception as e:
logger.error(f"Web search failed: {e}")
return []
def get_medical_context(self, query):
"""Hybrid context retrieval system"""
try:
# 1. Try local knowledge base
local_context = self.vector_store.similarity_search(query, k=2)
if len(local_context) < 1:
raise ValueError("No local results")
# 2. Fallback to NHS API
api_data = asyncio.run(self.query_nhs_api(query))
if api_data:
return self._parse_api_response(api_data)
# 3. Final fallback to web search
web_results = self.web_fallback(query)
return "\n".join(web_results[:2])
except Exception as e:
logger.error(f"Context retrieval failed: {e}")
return ""
def _parse_api_response(self, api_data):
"""Structure NHS API response for LLM consumption"""
return f"""
[NHS Direct Guidelines]
Condition: {api_data.get('name', '')}
Symptoms: {', '.join(api_data.get('symptoms', []))}
Treatment: {api_data.get('treatment', '')}
Last Updated: {api_data.get('dateModified', '')}
"""
def schedule_knowledge_updates(self):
"""Weekly index rebuild with fresh data"""
scheduler = BackgroundScheduler()
scheduler.add_job(self.build_medical_index, 'interval', weeks=1)
scheduler.start()
@torch.inference_mode()
def generate_safe_response(self, message, history):
"""Enhanced with dynamic crisis handling"""
# Emergency detection
if any(kw in message.lower() for kw in ['suicid', 'end it all', 'kill myself']):
return self._mental_health_crisis_response()
try:
# Dynamic context handling
context = self.get_medical_context(message)
def _determine_triage_level(self, context):
context_lower = context.lower()
for level, keywords in triage_levels.items():
if any(kw in context_lower for kw in keywords):
return level
return 'GP Care'
def _parse_medical_context(self, context):
components = {
'advice': [], 'red_flags': [],
'timeframe': '24 hours', 'special_considerations': []
}
current_section = None
for line in context.split('\n'):
line = line.strip()
if ':' in line:
key, value = line.split(':', 1)
key = key.strip().lower()
if key == 'immediate actions':
current_section = 'advice'
components['advice'].append(value.strip())
elif key == 'red flags':
current_section = 'red_flags'
components['red_flags'].append(value.strip())
elif key == 'action timeline':
components['timeframe'] = value.strip()
elif key == 'cultural considerations':
current_section = 'special_considerations'
components['special_considerations'].append(value.strip())
elif current_section:
components[current_section].append(line)
# Convert lists to strings
for key in components:
if isinstance(components[key], list):
components[key] = '\n- '.join(components[key])
return components
def setup_model(self, model_name="google/gemma-7b-it"):
"""Initialize the medical AI model with 4-bit quantization"""
if self.model is not None:
return
logger.info("π Initializing medical AI model")
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16
)
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.tokenizer.pad_token = self.tokenizer.eos_token
base_model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
quantization_config=bnb_config,
torch_dtype=torch.float16
)
peft_config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.05,
task_type="CAUSAL_LM"
)
self.model = get_peft_model(base_model, peft_config)
logger.info("β
Medical AI model ready")
def setup_rag_system(self):
logger.info("π Initializing medical knowledge base")
self.embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": "cpu"}
)
if not os.path.exists("medical_index/index.faiss"):
self.build_medical_index()
self.vector_store = FAISS.load_local(
"medical_index",
self.embeddings,
allow_dangerous_deserialization=True
)
def build_medical_index(self):
medical_knowledge = {
# ===== EMERGENCY CONDITIONS (Call 999) =====
"emergency_pediatric.txt": """
Triage Level: Emergency
Conditions: Pediatric Respiratory Distress, Head Injury
Key Symptoms:
- Blue lips/tongue (cyanosis)
- Stridor or wheezing at rest
- Repeated vomiting post-head injury
- Unconsciousness >1 minute
Immediate Actions:
1. Call 999 immediately
2. Maintain airway if trained
3. Monitor breathing rate
Cultural Considerations:
- Provide gender-matched responders if requested
- Accommodate religious head coverings during assessment""",
"emergency_mental_health.txt": """
Triage Level: Emergency
Conditions: Suicidal Crisis, Psychotic Episode
Key Symptoms:
- Expressing concrete suicide plan
- Hallucinations commanding harm
- Severe self-injury with blood loss
- Catatonic state
Immediate Actions:
1. Call 999 if immediate danger
2. Remove potential weapons
3. Stay with patient until help arrives
Special Considerations:
- Avoid physical restraint unless absolutely necessary
- Use non-judgmental language
Red Flags:
- Talking about being a burden
- Sudden calm after depression
- Giving away possessions""",
# ===== URGENT CARE CONDITIONS (A&E/UTC) =====
"urgent_mental_health.txt": """
Triage Level: Urgent
Conditions: Panic Attacks, Self-Harm
Key Symptoms:
- Hyperventilation >30 minutes
- Superficial self-harm injuries
- Acute anxiety with derealization
Action Timeline: Within 4 hours
While Waiting:
- Practice grounding techniques
- Use ice cubes for sensory focus
- Track panic duration/frequency
Escalate If:
- Chest pain develops
- Dissociation persists >1 hour
- Urges escalate""",
"urgent_pregnancy.txt": """
Triage Level: Urgent
Conditions: Pregnancy Complications
Key Symptoms:
- Vaginal bleeding + abdominal pain
- Reduced fetal movement
- Sudden swelling + headache
Action Timeline: Within 2 hours
Cultural Protocols:
- Offer female clinician if preferred
- Respect modesty requests
Red Flags:
- Fluid leakage + fever
- Visual disturbances
- Contractions <37 weeks""",
# ===== GP CARE CONDITIONS =====
"gp_mental_health.txt": """
Triage Level: GP Care
Conditions: Anxiety, Depression, PTSD
Key Symptoms:
- Persistent low mood >2 weeks
- Panic attacks 2+/week
- Sleep disturbances + fatigue
- Avoidance behaviors
Action Timeline: 72 hours
Management Strategies:
- Keep mood/symptom diary
- Practice 4-7-8 breathing
- Maintain routine activities
Red Flags:
- Social withdrawal >1 week
- Weight loss >5% in month
- Suicidal ideation""",
# ===== SELF-CARE CONDITIONS =====
"selfcare_mental_health.txt": """
Triage Level: Self-Care
Conditions: Mild Anxiety, Stress
Key Symptoms:
- Situational anxiety
- Work-related stress
- Mild sleep difficulties
Management:
- Practice box breathing
- Limit caffeine/alcohol
- Use worry journal
- Progressive muscle relaxation
Escalate If:
- Symptoms persist >2 weeks
- Panic attacks develop
- Daily functioning impaired""",
# ===== PEDIATRIC MENTAL HEALTH =====
"pediatric_mental_health.txt": """
Triage Level: GP Care
Conditions: Childhood Anxiety, School Refusal
Key Symptoms:
- School avoidance >3 days
- Somatic complaints (stomachaches)
- Nightmares/bedwetting regression
Action Timeline: 1 week
Parent Guidance:
- Maintain consistent routine
- Validate feelings without reinforcement
- Use gradual exposure techniques
Red Flags:
- Food restriction
- Self-harm marks
- Social isolation >1 week""",
# ===== CULTURAL MENTAL HEALTH =====
"cultural_mental_health.txt": """
Triage Level: GP Care
Conditions: Culturally-Specific Presentations
Key Symptoms:
- Somatic complaints without medical cause
- Religious preoccupation/guilt
- Migration-related stress
Cultural Considerations:
- Use trained interpreters
- Consider spiritual assessments
- Respect family hierarchy
Management:
- Community support referrals
- Culturally-adapted CBT
- Family involvement""",
# ===== CHRONIC CONDITIONS =====
"chronic_mental_health.txt": """
Triage Level: GP Care
Conditions: Bipolar, OCD, Eating Disorders
Key Symptoms:
- Manic episodes >4 days
- Compulsions >1hr/day
- BMI <18.5 with body dysmorphia
Monitoring:
- Mood tracking charts
- Compulsion frequency log
- Weekly weight checks
Crisis Signs:
- Rapid speech + sleeplessness
- Food restriction >24hrs
- Contamination fears preventing eating""",
# ===== PERINATAL MENTAL HEALTH =====
"perinatal_mental_health.txt": """
Triage Level: Urgent
Conditions: Postpartum Depression, Psychosis
Key Symptoms:
- Intrusive harm thoughts
- Detachment from baby
- Visual/auditory hallucinations
Action Timeline: 24 hours
Safety Measures:
- Partner supervision
- Remove harmful objects
- Breastfeeding support
Red Flags:
- Planning infant harm
- Extreme paranoia
- Refusing sleep""",
# ===== ADDICTION & SUBSTANCE =====
"addiction_care.txt": """
Triage Level: Urgent
Conditions: Withdrawal, Overdose Risk
Key Symptoms:
- Seizure history + alcohol use
- IV drug use + fever
- Opioid constricted pupils
Immediate Actions:
1. Call 111 for withdrawal management
2. Monitor breathing rate
3. Provide naloxone if available
Danger Signs:
- Jaundice + abdominal pain
- Chest pain + stimulant use
- Hallucinations + tremor"""
}
# Keep existing index building logic
os.makedirs("medical_knowledge", exist_ok=True)
for filename, content in medical_knowledge.items():
with open(f"medical_knowledge/{filename}", "w") as f:
f.write(content)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=512,
chunk_overlap=128
)
documents = []
for text in medical_knowledge.values():
documents.extend(text_splitter.split_text(text))
vector_store = FAISS.from_texts(
documents,
self.embeddings,
metadatas=[{"source": f"doc_{i}"} for i in range(len(documents))]
)
vector_store.save_local("medical_index")
def _mental_health_crisis_response(self):
"""Immediate crisis intervention"""
return """π¨ **Emergency Mental Health Support**
1. Call 999 immediately
2. Text SHOUT to 85258 (24/7 crisis text line)
3. Stay on chat - I'll help you connect to services
You're not alone. Let's get through this together."""
def get_medical_context(self, query):
try:
docs = self.vector_store.similarity_search(query, k=2)
return "\n".join([d.page_content for d in docs])
except Exception as e:
logger.error(f"Context error: {e}")
return ""
@torch.inference_mode()
def generate_safe_response(self, message, history):
try:
# Add case initialization check
if self.current_case is None:
context = self.get_medical_context(message)
self._initialize_case(context)
return self._next_question()
context = self.get_medical_context(message)
triage_level = self._determine_triage_level(context)
components = self._parse_medical_context(context)
response_templates = {
'Emergency': (
"π¨ **Emergency Alert**\n"
"{advice}\n\n"
"β οΈ **Immediate Action Required:**\n"
"- Call 999 NOW if:\n{red_flags}\n"
"π **Special Considerations:**\n{special_considerations}"
),
'Urgent': (
"β οΈ **Urgent Care Needed**\n"
"Visit A&E within {timeframe} if:\n{red_flags}\n\n"
"π©Ί **While Waiting:**\n{advice}\n\n"
"π **Cultural Notes:**\n{special_considerations}"
),
'GP Care': (
"π
**GP Consultation**\n"
"Book appointment within {timeframe}\n\n"
"π‘ **Self-Care Advice:**\n{advice}\n\n"
"β οΈ **Red Flags:**\n{red_flags}"
),
'Self-Care': (
"π‘ **Self-Care Management**\n"
"{advice}\n\n"
"β οΈ **Seek Help If:**\n{red_flags}"
)
}
response = response_templates[triage_level].format(**components)
# Add safety netting
if not any(phrase in response.lower() for phrase in self.safety_phrases):
response += "\n\nIf symptoms persist, please contact NHS 111."
return response[:500] # Maintain length limit
except Exception as e:
logger.error(f"Generation error: {e}")
return "Please contact NHS 111 directly for urgent medical advice."
def _initialize_case(self, message):
context = self.get_medical_context(message)
self.current_case = {
"symptoms": self._detect_symptoms(context),
"responses": {},
"stage": "investigation",
"step": 0,
"location": None,
"guidelines": context
}
def _detect_symptoms(self, context):
return list(set(
line.split(":")[0].strip()
for line in context.split("\n")
if ":" in line
))
def _next_question(self):
questions = self.base_questions + self._generate_custom_questions()
if self.current_case["step"] < len(questions):
return questions[self.current_case["step"]][1]
self.current_case["stage"] = "location"
return "Could you share your UK postcode for local service recommendations?"
def _generate_custom_questions(self):
return [(f"custom_{i}", q.split(":")[1].strip())
for q in self.current_case["guidelines"].split("\n")
if "?" in q]
def _handle_investigation(self, message, history):
self.current_case["responses"][self.base_questions[self.current_case["step"]][0]] = message
self.current_case["step"] += 1
return self._next_question()
def _handle_location(self, message):
self.current_case["location"] = self._get_location(message)
self.current_case["stage"] = "recommendation"
return self._final_recommendation()
def _final_recommendation(self):
action = self._determine_action()
location_info = self._get_location_services()
self.current_case = None
return f"{action}\n\n{location_info}"
def _determine_action(self):
if self._is_emergency():
return "π Call 999 immediately. I can stay on the line with you."
if self._needs_gp():
return "π
Please book a GP appointment. Would you like me to help with that?"
return "π₯ Visit your nearest urgent care centre:"
def _get_location_services(self):
if not self.current_case["location"]:
return "Find local services: https://www.nhs.uk/service-search"
return "\n".join([
f"{service_type}: {', '.join(services)}"
for service_type, services in
self.location_services.get(self.current_case["location"], {}).items()
])
def _is_emergency(self):
return any(keyword in self.current_case["guidelines"]
for keyword in ["999", "emergency", "stroke"])
def _needs_gp(self):
return any(keyword in self.current_case["guidelines"]
for keyword in ["GP", "appointment", "persistent"])
def _get_location(self, postcode):
return "London" if postcode.startswith("L") else "Manchester"
def _build_prompt(self, message, history):
conversation = "\n".join([f"User: {user}\nAssistant: {bot}" for user, bot in history[-3:]])
context = self.get_medical_context(message)
triage_level = self._determine_triage_level(context)
return f"""<start_of_turn>system
Triage Level: {triage_level}
Context:
{context}
Conversation History:
{conversation}
Response Guidelines:
1. Use {triage_level} response template
2. Include safety netting
3. Consider cultural factors
4. Maintain NHS protocols
<end_of_turn>
<start_of_turn>user
{message}
<end_of_turn>
<start_of_turn>assistant"""
# ===========================
# π¬ SAFE GRADIO INTERFACE
# ===========================
def create_medical_interface():
bot = MedicalTriageBot()
bot.setup_model()
bot.setup_rag_system()
def handle_conversation(message, history):
try:
# Handle GP booking requests
if "book gp" in message.lower():
return history + [(message, "Redirecting to GP booking system...")]
# Handle location input
if any(word in message.lower() for word in ["postcode", "zip code", "location"]):
return history + [(message, "Please enter your UK postcode:")]
# Normal symptom processing
response = bot.generate_safe_response(message, history)
return history + [(message, response)]
except Exception as e:
logger.error(f"Conversation error: {e}")
return history + [(message, "System error - please refresh the page")]
with gr.Blocks(theme=gr.themes.Soft()) as interface:
gr.Markdown("# NHS Triage Assistant")
gr.HTML("""<div class="emergency-banner">π¨ In emergencies, always call 999 immediately</div>""")
with gr.Row():
chatbot = gr.Chatbot(
value=[("", "Hello! I'm Pearly, your digital assistant. How can I help you today?")],
height=500,
label="Medical Triage Chat"
)
with gr.Row():
message_input = gr.Textbox(
placeholder="Describe your symptoms...",
label="Your Message",
max_lines=3
)
submit_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear History")
# Event handlers
message_input.submit(
handle_conversation,
[message_input, chatbot],
[chatbot]
).then(lambda: "", None, [message_input])
submit_btn.click(
handle_conversation,
[message_input, chatbot],
[chatbot]
).then(lambda: "", None, [message_input])
clear_btn.click(
lambda: [("", "Hello! I'm Pearly, your digital assistant. How can I help you today?")],
None,
[chatbot]
)
return interface
# ===========================
# π LAUNCH APPLICATION
# ===========================
if __name__ == "__main__":
SecretsManager.setup()
medical_app = create_medical_interface()
medical_app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
) |