Spaces:
Sleeping
Sleeping
Helena
commited on
Commit
路
18be831
1
Parent(s):
1f9b51b
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Proyecto 2: Modelos de IA
|
2 |
+
Traducci贸n de audio en espa帽ol a audio en ingl茅s
|
3 |
+
Modelo para la recogida del audio: https://huggingface.co/openai/whisper-large-v3-turbo
|
4 |
+
Modelo texto-audio:
|
5 |
+
"""
|
6 |
+
|
7 |
+
import whisper
|
8 |
+
from transformers import pipeline
|
9 |
+
import gradio as gr
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
from bark import generate_audio
|
13 |
+
from scipy.io.wavfile import write
|
14 |
+
import tempfile
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
# Cargar el modelo Whisper-large-v3-turbo
|
20 |
+
transcribir = pipeline("automatic-speech-recognition", model="openai/whisper-small")
|
21 |
+
bark = pipeline("text-to-speech", model="suno/bark")
|
22 |
+
|
23 |
+
# Funci贸n para transcribir el audio
|
24 |
+
def transcribir_audio(audio):
|
25 |
+
# Usamos el pipeline de Hugging Face para la transcripci贸n
|
26 |
+
result = transcribir_audio(audio)
|
27 |
+
return result["text"]
|
28 |
+
|
29 |
+
#Funci贸n para generar el audio
|
30 |
+
def generar_audio(text):
|
31 |
+
#Generar audio con Bark
|
32 |
+
audio_array = generate_audio(text)
|
33 |
+
|
34 |
+
# Normalizar el array de audio (opcional si Bark ya devuelve datos normalizados)
|
35 |
+
audio_array = np.clip(audio_array, -1.0, 1.0) # Asegurar que los valores est茅n en [-1.0, 1.0]
|
36 |
+
|
37 |
+
# Crear un archivo temporal para almacenar el audio
|
38 |
+
temp_wav = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
39 |
+
write(temp_wav.name, 24000, (audio_array * 32767).astype(np.int16)) # Guardar el archivo como WAV
|
40 |
+
|
41 |
+
return temp_wav.name
|
42 |
+
|
43 |
+
|
44 |
+
def process_audio(audio_file):
|
45 |
+
# Paso 1: Transcripci贸n con Whisper
|
46 |
+
transcripcion = transcribir(audio_file)["text"]
|
47 |
+
|
48 |
+
# Paso 2: Generaci贸n de audio con Bark
|
49 |
+
audio_sintetizado = generar_audio(transcripcion)
|
50 |
+
|
51 |
+
return transcripcion, audio_sintetizado
|
52 |
+
|
53 |
+
|
54 |
+
"""# Crear la interfaz de usuario con Gradio
|
55 |
+
iface = gr.Interface(
|
56 |
+
fn=transcribir_audio,
|
57 |
+
inputs=gr.Audio(type="filepath"), # Permite cargar o grabar audio
|
58 |
+
outputs=gr.Audio(type="filepath", label="Tus palabras... pero en ingl茅s"), # Mostrar la transcripci贸n
|
59 |
+
title="Traductor de voz",
|
60 |
+
description="Carga o graba tu audio para traducirlo al ingl茅s."
|
61 |
+
)
|
62 |
+
|
63 |
+
# Iniciar la interfaz
|
64 |
+
iface.launch()"""
|
65 |
+
|
66 |
+
# Crear interfaz Gradio
|
67 |
+
with gr.Blocks() as demo:
|
68 |
+
gr.Markdown("### Transcripci贸n y S铆ntesis de Voz")
|
69 |
+
|
70 |
+
with gr.Row():
|
71 |
+
input_audio = gr.Audio(label="Sube tu archivo de audio", type="filepath")
|
72 |
+
transcription_output = gr.Textbox(label="Texto transcrito")
|
73 |
+
output_audio = gr.Audio(label="Audio generado")
|
74 |
+
|
75 |
+
process_button = gr.Button("Procesar")
|
76 |
+
process_button.click(process_audio, inputs=input_audio, outputs=[transcription_output, output_audio])
|
77 |
+
|
78 |
+
# Lanzar la app
|
79 |
+
demo.launch()
|
80 |
+
|