Spaces:
Sleeping
Sleeping
....
Browse files
app.py
CHANGED
@@ -6,16 +6,37 @@ import torch
|
|
6 |
from bark import generate_audio
|
7 |
from scipy.io.wavfile import write
|
8 |
import tempfile
|
|
|
9 |
|
10 |
-
|
|
|
11 |
transcribir = pipeline("automatic-speech-recognition", model="openai/whisper-small")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Funci贸n para transcribir el audio y traducir el audio de entrada
|
14 |
def transcribir_audio(audio):
|
15 |
-
#
|
16 |
-
result =
|
17 |
return result["text"]
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
# Funci贸n para generar el audio
|
20 |
def generar_audio(text):
|
21 |
if not isinstance(text, str):
|
@@ -26,12 +47,17 @@ def generar_audio(text):
|
|
26 |
write(temp_wav.name, 24000, (audio_array * 32767).astype(np.int16))
|
27 |
return temp_wav.name
|
28 |
|
|
|
|
|
29 |
def process_audio(audio_file):
|
30 |
try:
|
31 |
# Paso 1: Transcripci贸n con Whisper
|
32 |
-
|
|
|
|
|
|
|
33 |
|
34 |
-
# Paso
|
35 |
audio_sintetizado = generar_audio(transcripcion_traducida)
|
36 |
|
37 |
return transcripcion_traducida, audio_sintetizado
|
@@ -51,4 +77,4 @@ with gr.Blocks() as demo:
|
|
51 |
process_button.click(process_audio, inputs=input_audio, outputs=[transcription_output, output_audio])
|
52 |
|
53 |
# Lanzar la app
|
54 |
-
demo.launch(share=True)
|
|
|
6 |
from bark import generate_audio
|
7 |
from scipy.io.wavfile import write
|
8 |
import tempfile
|
9 |
+
from transformers import MarianMTModel, MarianTokenizer
|
10 |
|
11 |
+
|
12 |
+
# Cargar el modelo Whisper-small y bark
|
13 |
transcribir = pipeline("automatic-speech-recognition", model="openai/whisper-small")
|
14 |
+
"""bark = pipeline("text-to-speech", model="suno/bark")"""
|
15 |
+
|
16 |
+
|
17 |
+
# Cargar el tokenizador y el modelo para espa帽ol a ingl茅s
|
18 |
+
model_name = "Helsinki-NLP/opus-mt-es-en"
|
19 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
20 |
+
model = MarianMTModel.from_pretrained(model_name)
|
21 |
+
|
22 |
|
23 |
# Funci贸n para transcribir el audio y traducir el audio de entrada
|
24 |
def transcribir_audio(audio):
|
25 |
+
# Usamos el pipeline de Hugging Face para la transcripci贸n
|
26 |
+
result = transcribir_audio(audio_file, task="translate")
|
27 |
return result["text"]
|
28 |
|
29 |
+
|
30 |
+
def traducir_texto(texto):
|
31 |
+
# Tokenizar el texto
|
32 |
+
inputs = tokenizer(texto, return_tensors="pt", padding=True, truncation=True)
|
33 |
+
# Generar la traducci贸n
|
34 |
+
translated = model.generate(**inputs)
|
35 |
+
# Decodificar la traducci贸n
|
36 |
+
traduccion = tokenizer.batch_decode(translated, skip_special_tokens=True)[0]
|
37 |
+
return traduccion
|
38 |
+
|
39 |
+
|
40 |
# Funci贸n para generar el audio
|
41 |
def generar_audio(text):
|
42 |
if not isinstance(text, str):
|
|
|
47 |
write(temp_wav.name, 24000, (audio_array * 32767).astype(np.int16))
|
48 |
return temp_wav.name
|
49 |
|
50 |
+
|
51 |
+
|
52 |
def process_audio(audio_file):
|
53 |
try:
|
54 |
# Paso 1: Transcripci贸n con Whisper
|
55 |
+
transcripcion = transcribir_audio(audio_file)
|
56 |
+
|
57 |
+
# Paso 2: Traducci贸n con MarianMT
|
58 |
+
transcripcion_traducida = traducir_texto(transcripcion)
|
59 |
|
60 |
+
# Paso 3: Generaci贸n de audio con Bark
|
61 |
audio_sintetizado = generar_audio(transcripcion_traducida)
|
62 |
|
63 |
return transcripcion_traducida, audio_sintetizado
|
|
|
77 |
process_button.click(process_audio, inputs=input_audio, outputs=[transcription_output, output_audio])
|
78 |
|
79 |
# Lanzar la app
|
80 |
+
demo.launch(share=True)
|