Spaces:
Sleeping
Sleeping
actualizado
Browse files
app.py
CHANGED
@@ -9,14 +9,6 @@ import tempfile
|
|
9 |
from transformers import MarianMTModel, MarianTokenizer
|
10 |
|
11 |
|
12 |
-
# Cargar el modelo Whisper-small y bark
|
13 |
-
|
14 |
-
"""bark = pipeline("text-to-speech", model="suno/bark")"""
|
15 |
-
|
16 |
-
|
17 |
-
# Cargar el tokenizador y el modelo para espa帽ol a ingl茅s
|
18 |
-
|
19 |
-
|
20 |
|
21 |
# Funci贸n para transcribir el audio y traducir el audio de entrada
|
22 |
def transcribir_audio(audio):
|
@@ -48,19 +40,7 @@ def generar_audio(text):
|
|
48 |
temp_wav = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
49 |
write(temp_wav.name, 24000, (audio_array * 32767).astype(np.int16))
|
50 |
return temp_wav.name
|
51 |
-
|
52 |
|
53 |
-
"""def process_audio(audio_file):
|
54 |
-
try:
|
55 |
-
# Paso 1: Transcripci贸n y traducci贸n con Whisper
|
56 |
-
transcripcion_traducida = transcribir_audio(audio_file)
|
57 |
-
|
58 |
-
# Paso 2: Generaci贸n de audio con Bark
|
59 |
-
audio_sintetizado = generar_audio(transcripcion_traducida)
|
60 |
-
|
61 |
-
return transcripcion_traducida, audio_sintetizado
|
62 |
-
except Exception as e:
|
63 |
-
return str(e), None"""
|
64 |
|
65 |
def process_audio(audio_file):
|
66 |
try:
|
|
|
9 |
from transformers import MarianMTModel, MarianTokenizer
|
10 |
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Funci贸n para transcribir el audio y traducir el audio de entrada
|
14 |
def transcribir_audio(audio):
|
|
|
40 |
temp_wav = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
41 |
write(temp_wav.name, 24000, (audio_array * 32767).astype(np.int16))
|
42 |
return temp_wav.name
|
|
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
def process_audio(audio_file):
|
46 |
try:
|