File size: 2,349 Bytes
03d2f46
1325e72
 
 
 
03d2f46
161b347
03d2f46
161b347
03d2f46
 
1325e72
61f2a3d
03d2f46
 
 
 
 
 
2941c6d
1325e72
 
 
 
 
 
 
 
161b347
 
 
 
1325e72
 
 
 
03d2f46
 
 
1325e72
 
 
 
 
 
03d2f46
 
1325e72
03d2f46
 
161b347
 
03d2f46
1325e72
03d2f46
 
161b347
 
 
2941c6d
161b347
03d2f46
161b347
2941c6d
 
 
 
161b347
 
 
 
03d2f46
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from threading import Thread
from spaces import GPU
from gradio import ChatInterface, Textbox, Slider

from transformers import Qwen2VLForConditionalGeneration, Qwen2VLProcessor, TextIteratorStreamer, AutoProcessor, BatchFeature
from qwen_vl_utils import process_vision_info

model_path = "Pectics/Softie-VL-7B-250123"

model = Qwen2VLForConditionalGeneration.from_pretrained(
    model_path,
    torch_dtype="auto",
    attn_implementation="flash_attention_2",
    device_map="auto",
)
min_pixels = 256 * 28 * 28
max_pixels = 1280 * 28 * 28
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_path, min_pixels=min_pixels, max_pixels=max_pixels)

@GPU
def infer(inputs: BatchFeature, **kwargs) -> None:
    inputs = inputs.to("cuda")
    model.generate(**kwargs)

def respond(
    message,
    history,
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]
    for m in history:
        messages.append({"role": m["role"], "content": m["content"]})
    messages.append({"role": "user", "content": message})
    text_inputs = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text = [text_inputs],
        images = image_inputs,
        videos = video_inputs,
        padding = True,
        return_tensors = "pt",
    )
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    kwargs = dict(
        inputs=inputs,
        streamer=streamer,
        max_new_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
    )
    Thread(target=infer, kwargs=kwargs).start()
    response = ""
    for token in streamer:
        response += token
        yield response

app = ChatInterface(
    respond,
    type="messages",
    additional_inputs=[
        Textbox(value="You are Softie, a helpful assistant.", label="系统设定"),
        Slider(minimum=1, maximum=2048, value=512, step=1, label="最大生成长度"),
        Slider(minimum=0.01, maximum=4.0, value=0.75, step=0.01, label="温度系数(Temperature)"),
        Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.01, label="核取样系数(Top-p)"),
    ],
)

if __name__ == "__main__":
    app.launch()