File size: 2,435 Bytes
161b347 03d2f46 161b347 03d2f46 161b347 03d2f46 161b347 03d2f46 61f2a3d 03d2f46 61f2a3d 161b347 03d2f46 161b347 03d2f46 161b347 61f2a3d 89132db 61f2a3d 03d2f46 161b347 03d2f46 161b347 03d2f46 161b347 03d2f46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import gradio as gr
import spaces
from threading import Thread
from torch import bfloat16
from transformers import Qwen2VLForConditionalGeneration, Qwen2VLProcessor, TextIteratorStreamer, AutoProcessor
from qwen_vl_utils import process_vision_info
model_path = "Pectics/Softie-VL-7B-250123"
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_path,
torch_dtype=bfloat16,
attn_implementation="flash_attention_2",
device_map="auto",
)
min_pixels = 256 * 28 * 28
max_pixels = 1280 * 28 * 28
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_path, min_pixels=min_pixels, max_pixels=max_pixels)
@spaces.GPU
def infer(
messages,
max_tokens,
temperature,
top_p,
):
text_inputs = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text_inputs],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
kwargs = dict(
**inputs,
streamer=streamer,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
thread = Thread(target=model.generate, kwargs=kwargs)
thread.start()
response = ""
for token in streamer:
response += token
yield response
def respond(
message,
history,
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for m in history:
messages.append({"role": m["role"], "content": m["content"]})
messages.append({"role": "user", "content": message})
for response in infer(messages, max_tokens, temperature, top_p):
yield response
app = gr.ChatInterface(
respond,
type="messages",
additional_inputs=[
gr.Textbox(value="You are Softie, a helpful assistant.", label="系统设定"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="最大生成长度"),
gr.Slider(minimum=0.01, maximum=4.0, value=0.75, step=0.01, label="温度系数(Temperature)"),
gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.01, label="核取样系数(Top-p)"),
],
)
if __name__ == "__main__":
app.launch()
|