File size: 2,456 Bytes
dc15a3f
 
374e122
 
03d2f46
374e122
161b347
03d2f46
161b347
03d2f46
 
dc15a3f
03d2f46
dc15a3f
03d2f46
 
 
 
 
2941c6d
dc15a3f
469e885
dc15a3f
 
 
 
469e885
 
 
 
 
 
 
dc15a3f
 
 
 
 
 
 
 
374e122
af0c8f0
 
 
 
1325e72
 
 
 
 
161b347
 
 
 
1325e72
 
 
 
03d2f46
 
469e885
161b347
 
2941c6d
161b347
03d2f46
161b347
2941c6d
 
 
 
161b347
 
 
 
03d2f46
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from spaces import GPU

from threading import Thread
from transformers import Qwen2VLForConditionalGeneration, Qwen2VLProcessor, TextIteratorStreamer, AutoProcessor, BatchFeature
from qwen_vl_utils import process_vision_info
from gradio import ChatInterface, Textbox, Slider

model_path = "Pectics/Softie-VL-7B-250123"

model = Qwen2VLForConditionalGeneration.from_pretrained(
    model_path,
    torch_dtype="auto",
    device_map="auto",
    attn_implementation="flash_attention_2",
)
min_pixels = 256 * 28 * 28
max_pixels = 1280 * 28 * 28
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_path, min_pixels=min_pixels, max_pixels=max_pixels)

@GPU
def infer(
    inputs: tuple,
    max_tokens: int,
    temperature: float,
    top_p: float,
):
    inputs = processor(
        text=[inputs[0]],
        images=inputs[1],
        videos=inputs[2],
        padding=True,
        return_tensors="pt",
    ).to("cuda")
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    kwargs = dict(
        **inputs,
        streamer=streamer,
        max_new_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
    )
    Thread(target=model.generate, kwargs=kwargs).start()
    response = ""
    for token in streamer:
        response += token
        yield response

def respond(
    message,
    history,
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]
    for m in history:
        messages.append({"role": m["role"], "content": m["content"]})
    messages.append({"role": "user", "content": message})
    text_inputs = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    for response in infer((text_inputs, image_inputs, video_inputs), max_tokens, temperature, top_p):
        yield response

app = ChatInterface(
    respond,
    type="messages",
    additional_inputs=[
        Textbox(value="You are Softie, a helpful assistant.", label="系统设定"),
        Slider(minimum=1, maximum=2048, value=512, step=1, label="最大生成长度"),
        Slider(minimum=0.01, maximum=4.0, value=0.75, step=0.01, label="温度系数(Temperature)"),
        Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.01, label="核取样系数(Top-p)"),
    ],
)

if __name__ == "__main__":
    app.launch()