File size: 2,487 Bytes
aa819ab 1325e72 dc15a3f 03d2f46 161b347 03d2f46 161b347 03d2f46 dc15a3f 03d2f46 dc15a3f 03d2f46 2941c6d dc15a3f 1325e72 dc15a3f af0c8f0 1325e72 161b347 1325e72 03d2f46 1325e72 dc15a3f 161b347 2941c6d 161b347 03d2f46 161b347 2941c6d 161b347 03d2f46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
from threading import Thread
from transformers import Qwen2VLForConditionalGeneration, Qwen2VLProcessor, TextIteratorStreamer, AutoProcessor, BatchFeature
from gradio import ChatInterface, Textbox, Slider
from spaces import GPU
from qwen_vl_utils import process_vision_info
model_path = "Pectics/Softie-VL-7B-250123"
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_path,
torch_dtype="auto",
device_map="auto",
attn_implementation="flash_attention_2",
)
min_pixels = 256 * 28 * 28
max_pixels = 1280 * 28 * 28
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_path, min_pixels=min_pixels, max_pixels=max_pixels)
@GPU
def infer(
inputs: BatchFeature,
max_tokens: int,
temperature: float,
top_p: float,
):
inputs = inputs.to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
kwargs = dict(
**inputs,
streamer=streamer,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
thread = Thread(target=model.generate, kwargs=kwargs)
thread.start()
response = ""
for token in streamer:
response += token
yield response
def respond(
message,
history,
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for m in history:
messages.append({"role": m["role"], "content": m["content"]})
messages.append({"role": "user", "content": message})
text_inputs = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text = [text_inputs],
images = image_inputs,
videos = video_inputs,
padding = True,
return_tensors = "pt",
)
for response in infer(inputs, max_tokens, temperature, top_p):
yield response
app = ChatInterface(
respond,
type="messages",
additional_inputs=[
Textbox(value="You are Softie, a helpful assistant.", label="系统设定"),
Slider(minimum=1, maximum=2048, value=512, step=1, label="最大生成长度"),
Slider(minimum=0.01, maximum=4.0, value=0.75, step=0.01, label="温度系数(Temperature)"),
Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.01, label="核取样系数(Top-p)"),
],
)
if __name__ == "__main__":
app.launch()
|