File size: 9,037 Bytes
dc15a3f 374e122 d81f4b6 03d2f46 d81f4b6 161b347 03d2f46 161b347 03d2f46 dc15a3f 03d2f46 dc15a3f 03d2f46 d81f4b6 2941c6d d81f4b6 469e885 dc15a3f 469e885 dc15a3f 374e122 af0c8f0 d81f4b6 1325e72 d81f4b6 bc0b758 d81f4b6 161b347 d81f4b6 f68ed0e d81f4b6 f68ed0e d81f4b6 95016f0 d81f4b6 161b347 03d2f46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
from spaces import GPU
from threading import Thread
from transformers import Qwen2VLForConditionalGeneration, Qwen2VLProcessor, TextIteratorStreamer, AutoProcessor
from qwen_vl_utils import process_vision_info
from gradio import ChatMessage, Chatbot, MultimodalTextbox, Slider, Checkbox, CheckboxGroup, Textbox, JSON, Blocks, Row, Column, Markdown, FileData
model_path = "Pectics/Softie-VL-7B-250123"
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_path,
torch_dtype="auto",
device_map="auto",
attn_implementation="flash_attention_2",
)
min_pixels = 256 * 28 * 28
max_pixels = 1280 * 28 * 28
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_path, min_pixels=min_pixels, max_pixels=max_pixels)
SYSTEM_PROMPT = """
You are Softie, or 小软 in Chinese.
You are an intelligent assistant developed by the School of Software at Hefei University of Technology.
You like to chat with people and help them solve problems.
You will interact with the user in the QQ group chat, and the user message you receive will satisfy the following format:
user_id: 用户ID
nickname: 用户昵称
content: 用户消息内容
You will directly output your reply content without the need to format it.
""".strip()
STREAMING_FLAG = False
STREAMING_STOP_FLAG = False
FORBIDDING_FLAG = False
def interrupt() -> None:
global STREAMING_FLAG
if STREAMING_FLAG:
global STREAMING_STOP_FLAG
STREAMING_STOP_FLAG = True
def callback(
input: dict,
history: list[ChatMessage],
messages: list
) -> tuple[str, list[ChatMessage], list]:
if len(history) <= 1 or len(messages) <= 1:
return input["text"], history, messages
history.pop(); messages.pop(); messages.pop()
return history.pop()["content"], history, messages
@GPU
def core_infer(
inputs: tuple,
max_tokens: int,
temperature: float,
top_p: float,
):
inputs = processor(
text=[inputs[0]],
images=inputs[1],
videos=inputs[2],
padding=True,
return_tensors="pt",
).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
kwargs = dict(
**inputs,
streamer=streamer,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
Thread(target=model.generate, kwargs=kwargs).start()
for token in streamer:
yield token
def process_model(
messages: str | list[object],
user_id: str,
nickname: str,
max_tokens: int,
temperature: float,
top_p: float,
use_tools: bool,
use_agents: bool,
*args: list,
):
global STREAMING_FLAG, STREAMING_STOP_FLAG, FORBIDDING_FLAG
if STREAMING_FLAG or FORBIDDING_FLAG or len(messages) <= 0 or messages[-1]["role"] != "user":
yield None, messages, args[0]
return
# embed user details
_msgs_copy = messages.copy()
if isinstance(_msgs_copy[-1]["content"], list):
if len(_msgs_copy[-1]["content"]) <= 0 or _msgs_copy[-1]["content"][-1]["type"] != "text":
_msgs_copy[-1]["content"].insert(0, {
"type": "text",
"text": f"""
user_id: {user_id}
nickname: {nickname}
content: """.lstrip(),
})
else:
_msgs_copy[-1]["content"][-1]["text"] = f"""
user_id: {user_id}
nickname: {nickname}
content: {_msgs_copy[-1]["content"][-1]["text"]}
""".strip()
else:
_msgs_copy[-1]["content"] = f"""
user_id: {user_id}
nickname: {nickname}
content: {_msgs_copy[-1]["content"]}
""".strip()
# process messages
text_inputs = processor.apply_chat_template(_msgs_copy, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(_msgs_copy)
response = ""
args[0].append(ChatMessage(role="assistant", content=""))
messages.append({"role": "assistant", "content": ""})
STREAMING_FLAG = True
for token in core_infer((text_inputs, image_inputs, video_inputs), max_tokens, temperature, top_p):
if STREAMING_STOP_FLAG:
response += "...(Interrupted)"
args[0][-1].content = response
messages[-1]["content"] = response
STREAMING_STOP_FLAG = False
yield response, messages, args[0]
break
response += token
args[0][-1].content = response
messages[-1]["content"] = response
yield response, messages, args[0]
STREAMING_FLAG = False
def process_input(
input: dict,
history: list[ChatMessage],
checkbox: list[str],
messages: str
) -> tuple[str, list[ChatMessage], bool, bool, list]:
global STREAMING_FLAG, FORBIDDING_FLAG
if STREAMING_FLAG or not isinstance(input["text"], str) or input["text"].strip() == "":
FORBIDDING_FLAG = True
return (
input["text"],
history,
"允许使用工具" in checkbox,
"允许使用代理模型" in checkbox,
messages
)
FORBIDDING_FLAG = False
if len(history) <= 0:
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
history.append(ChatMessage(role="system", content=SYSTEM_PROMPT))
else:
if history[0]["role"] != "system":
history.insert(0, ChatMessage(role="system", content=SYSTEM_PROMPT))
if messages[0]["role"] != "system":
messages.insert(0, {"role": "system", "content": SYSTEM_PROMPT})
message = {"role": "user", "content": []}
while isinstance(input["files"], list) and len(input["files"]) > 0:
path = input["files"].pop(0)
message["content"].append({"type": "image", "image": f"file://{path}"}) # Qwen2VL format
history.append(ChatMessage(role="user", content=FileData(path=path)))
message["content"].append({"type": "text", "text": input["text"]})
if len(message["content"]) == 1 and message["content"][0]["type"] == "text":
message["content"] = message["content"][0]["text"]
history.append(ChatMessage(role="user", content=input["text"]))
messages.append(message)
return (
"",
history,
"允许使用工具" in checkbox,
"允许使用代理模型" in checkbox,
messages,
)
with Blocks() as app:
text_response = Textbox("", visible=False, interactive=False)
use_tools = Checkbox(visible=False, interactive=False)
use_agents = Checkbox(visible=False, interactive=False)
Markdown("# 小软Softie")
with Row():
with Column(scale=3, min_width=500):
chatbot = Chatbot(type="messages", avatar_images=(None, "avatar.jpg"), scale=3, min_height=640, min_width=500, show_label=False, show_copy_button=True, show_copy_all_button=True)
textbox = MultimodalTextbox(file_types=[".jpg", ".jpeg", ".png"], file_count="multiple", stop_btn=True, show_label=False, autofocus=False, placeholder="在此输入内容")
with Column(scale=1, min_width=300):
with Column(scale=0):
max_tokens = Slider(interactive=True, minimum=1, maximum=2048, value=512, step=1, label="max_tokens", info="最大生成长度")
temperature = Slider(interactive=True, minimum=0.01, maximum=4.0, value=0.75, step=0.01, label="temperature", info="温度系数")
top_p = Slider(interactive=True, minimum=0.01, maximum=1.0, value=0.5, step=0.01, label="top_p", info="核取样系数")
checkbox = CheckboxGroup(["允许使用工具", "允许使用代理模型"], label="options", info="功能选项(开发中)")
with Column(scale=0):
user_id = Textbox(value=123456789, label="user_id", info="用户ID")
nickname = Textbox(value="用户1234", label="nickname", info="用户昵称")
json_messages = JSON([], max_height=25, label="json_messages")
## NOT SUPPORT IN GRADIO 5.0.1
# chatbot.clear(
# lambda: ("[]", ""),
# outputs=[json_messages, text_response],
# api_name=False,
# show_api=False,
# )
chatbot.retry(
callback,
[textbox, chatbot, json_messages],
[textbox, chatbot, json_messages],
api_name=False,
show_api=False,
)
chatbot.like(lambda: None, api_name=False, show_api=False)
textbox.submit(
process_input,
[textbox, chatbot, checkbox, json_messages],
[textbox, chatbot, use_tools, use_agents, json_messages],
queue=False,
api_name=False,
show_api=False,
show_progress="hidden",
trigger_mode="once",
).then(
process_model,
[json_messages, user_id, nickname, max_tokens, temperature, top_p, use_tools, use_agents, chatbot],
[text_response, json_messages, chatbot],
queue=True,
api_name="api",
show_api=True,
show_progress="hidden",
trigger_mode="once",
)
textbox.stop(interrupt, api_name=False, show_api=False)
if __name__ == "__main__":
app.launch()
|