Spaces:
Runtime error
Runtime error
PedroMartelleto
commited on
Commit
·
ad937a3
1
Parent(s):
a20413a
Added examples
Browse files- app.py +48 -0
- benign (243).png +0 -0
- benign (52).png +0 -0
- malignant (127).png +0 -0
- malignant (201).png +0 -0
- normal (101).png +0 -0
- normal (81).png +0 -0
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from torchvision.models import resnet50, ResNet50_Weights
|
3 |
+
from torchvision import transforms
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch
|
6 |
+
|
7 |
+
@staticmethod
|
8 |
+
def create_model_from_checkpoint():
|
9 |
+
# Loads a model from a checkpoint
|
10 |
+
model = resnet50()
|
11 |
+
model.fc = nn.Linear(model.fc.in_features, 3)
|
12 |
+
model.load_state_dict(torch.load("best_model"))
|
13 |
+
model.eval()
|
14 |
+
return model
|
15 |
+
|
16 |
+
def prep_image(img):
|
17 |
+
transform = transforms.Compose([
|
18 |
+
transforms.Resize(256),
|
19 |
+
transforms.CenterCrop(224),
|
20 |
+
transforms.ToTensor()
|
21 |
+
])
|
22 |
+
|
23 |
+
transform_normalize = transforms.Normalize(
|
24 |
+
mean=[0.485, 0.456, 0.406],
|
25 |
+
std=[0.229, 0.224, 0.225]
|
26 |
+
)
|
27 |
+
|
28 |
+
transformed_img = transform(img)
|
29 |
+
|
30 |
+
input = transform_normalize(transformed_img)
|
31 |
+
input = input.unsqueeze(0)
|
32 |
+
return input
|
33 |
+
|
34 |
+
model = create_model_from_checkpoint()
|
35 |
+
labels = [ "benign", "malignant", "normal" ]
|
36 |
+
|
37 |
+
def predict(img):
|
38 |
+
input = prep_image(img)
|
39 |
+
with torch.no_grad():
|
40 |
+
prediction = torch.nn.functional.softmax(model(input)[0], dim=0)
|
41 |
+
confidences = {labels[i]: float(prediction[i]) for i in range(3)}
|
42 |
+
return confidences
|
43 |
+
|
44 |
+
ui = gr.Interface(fn=predict,
|
45 |
+
inputs=gr.Image(type="pil"),
|
46 |
+
outputs=gr.Label(num_top_classes=3),
|
47 |
+
examples=["benign (52).png", "benign (243).png", "malignant (127).png", "malignant (201).png", "normal (81).png", "normal (101).png"]).launch()
|
48 |
+
ui.launch(share=True)
|
benign (243).png
ADDED
benign (52).png
ADDED
malignant (127).png
ADDED
malignant (201).png
ADDED
normal (101).png
ADDED
normal (81).png
ADDED