Spaces:
Running
Running
File size: 10,221 Bytes
94bafa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import os, io
import re
import json
import torch
import decord
import torchvision
import numpy as np
from PIL import Image
from einops import rearrange
from typing import Dict, List, Tuple
from torchvision import transforms
import random
class_labels_map = None
cls_sample_cnt = None
class_labels_map = None
cls_sample_cnt = None
def temporal_sampling(frames, start_idx, end_idx, num_samples):
"""
Given the start and end frame index, sample num_samples frames between
the start and end with equal interval.
Args:
frames (tensor): a tensor of video frames, dimension is
`num video frames` x `channel` x `height` x `width`.
start_idx (int): the index of the start frame.
end_idx (int): the index of the end frame.
num_samples (int): number of frames to sample.
Returns:
frames (tersor): a tensor of temporal sampled video frames, dimension is
`num clip frames` x `channel` x `height` x `width`.
"""
index = torch.linspace(start_idx, end_idx, num_samples)
index = torch.clamp(index, 0, frames.shape[0] - 1).long()
frames = torch.index_select(frames, 0, index)
return frames
def get_filelist(file_path):
Filelist = []
for home, dirs, files in os.walk(file_path):
for filename in files:
Filelist.append(os.path.join(home, filename))
# Filelist.append( filename)
return Filelist
def load_annotation_data(data_file_path):
with open(data_file_path, 'r') as data_file:
return json.load(data_file)
def get_class_labels(num_class, anno_pth='./k400_classmap.json'):
global class_labels_map, cls_sample_cnt
if class_labels_map is not None:
return class_labels_map, cls_sample_cnt
else:
cls_sample_cnt = {}
class_labels_map = load_annotation_data(anno_pth)
for cls in class_labels_map:
cls_sample_cnt[cls] = 0
return class_labels_map, cls_sample_cnt
def load_annotations(ann_file, num_class, num_samples_per_cls):
dataset = []
class_to_idx, cls_sample_cnt = get_class_labels(num_class)
with open(ann_file, 'r') as fin:
for line in fin:
line_split = line.strip().split('\t')
sample = {}
idx = 0
# idx for frame_dir
frame_dir = line_split[idx]
sample['video'] = frame_dir
idx += 1
# idx for label[s]
label = [x for x in line_split[idx:]]
assert label, f'missing label in line: {line}'
assert len(label) == 1
class_name = label[0]
class_index = int(class_to_idx[class_name])
# choose a class subset of whole dataset
if class_index < num_class:
sample['label'] = class_index
if cls_sample_cnt[class_name] < num_samples_per_cls:
dataset.append(sample)
cls_sample_cnt[class_name]+=1
return dataset
def find_classes(directory: str) -> Tuple[List[str], Dict[str, int]]:
"""Finds the class folders in a dataset.
See :class:`DatasetFolder` for details.
"""
classes = sorted(entry.name for entry in os.scandir(directory) if entry.is_dir())
if not classes:
raise FileNotFoundError(f"Couldn't find any class folder in {directory}.")
class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)}
return classes, class_to_idx
class DecordInit(object):
"""Using Decord(https://github.com/dmlc/decord) to initialize the video_reader."""
def __init__(self, num_threads=1):
self.num_threads = num_threads
self.ctx = decord.cpu(0)
def __call__(self, filename):
"""Perform the Decord initialization.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
reader = decord.VideoReader(filename,
ctx=self.ctx,
num_threads=self.num_threads)
return reader
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'sr={self.sr},'
f'num_threads={self.num_threads})')
return repr_str
class UCF101Images(torch.utils.data.Dataset):
"""Load the UCF101 video files
Args:
target_video_len (int): the number of video frames will be load.
align_transform (callable): Align different videos in a specified size.
temporal_sample (callable): Sample the target length of a video.
"""
def __init__(self,
configs,
transform=None,
temporal_sample=None):
self.configs = configs
self.data_path = configs.data_path
self.video_lists = get_filelist(configs.data_path)
self.transform = transform
self.temporal_sample = temporal_sample
self.target_video_len = self.configs.num_frames
self.v_decoder = DecordInit()
self.classes, self.class_to_idx = find_classes(self.data_path)
self.video_num = len(self.video_lists)
# ucf101 video frames
self.frame_data_path = configs.frame_data_path # important
self.video_frame_txt = configs.frame_data_txt
self.video_frame_files = [frame_file.strip() for frame_file in open(self.video_frame_txt)]
random.shuffle(self.video_frame_files)
self.use_image_num = configs.use_image_num
self.image_tranform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
])
self.video_frame_num = len(self.video_frame_files)
def __getitem__(self, index):
video_index = index % self.video_num
path = self.video_lists[video_index]
class_name = path.split('/')[-2]
class_index = self.class_to_idx[class_name]
vframes, aframes, info = torchvision.io.read_video(filename=path, pts_unit='sec', output_format='TCHW')
total_frames = len(vframes)
# Sampling video frames
start_frame_ind, end_frame_ind = self.temporal_sample(total_frames)
assert end_frame_ind - start_frame_ind >= self.target_video_len
frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, self.target_video_len, dtype=int)
video = vframes[frame_indice]
# videotransformer data proprecess
video = self.transform(video) # T C H W
images = []
image_names = []
for i in range(self.use_image_num):
while True:
try:
video_frame_path = self.video_frame_files[index+i]
image_class_name = video_frame_path.split('_')[1]
image_class_index = self.class_to_idx[image_class_name]
video_frame_path = os.path.join(self.frame_data_path, video_frame_path)
image = Image.open(video_frame_path).convert('RGB')
image = self.image_tranform(image).unsqueeze(0)
images.append(image)
image_names.append(str(image_class_index))
break
except Exception as e:
index = random.randint(0, self.video_frame_num - self.use_image_num)
images = torch.cat(images, dim=0)
assert len(images) == self.use_image_num
assert len(image_names) == self.use_image_num
image_names = '====='.join(image_names)
video_cat = torch.cat([video, images], dim=0)
return {'video': video_cat,
'video_name': class_index,
'image_name': image_names}
def __len__(self):
return self.video_frame_num
if __name__ == '__main__':
import argparse
import video_transforms
import torch.utils.data as Data
import torchvision.transforms as transforms
from PIL import Image
parser = argparse.ArgumentParser()
parser.add_argument("--num_frames", type=int, default=16)
parser.add_argument("--frame_interval", type=int, default=3)
parser.add_argument("--use-image-num", type=int, default=5)
parser.add_argument("--data-path", type=str, default="/path/to/datasets/UCF101/videos/")
parser.add_argument("--frame-data-path", type=str, default="/path/to/datasets/preprocessed_ffs/train/images/")
parser.add_argument("--frame-data-txt", type=str, default="/path/to/datasets/UCF101/train_256_list.txt")
config = parser.parse_args()
temporal_sample = video_transforms.TemporalRandomCrop(config.num_frames * config.frame_interval)
transform_ucf101 = transforms.Compose([
video_transforms.ToTensorVideo(), # TCHW
video_transforms.RandomHorizontalFlipVideo(),
video_transforms.UCFCenterCropVideo(256),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
])
ffs_dataset = UCF101Images(config, transform=transform_ucf101, temporal_sample=temporal_sample)
ffs_dataloader = Data.DataLoader(dataset=ffs_dataset, batch_size=6, shuffle=False, num_workers=1)
# for i, video_data in enumerate(ffs_dataloader):
for video_data in ffs_dataloader:
# print(type(video_data))
video = video_data['video']
# video_name = video_data['video_name']
print(video.shape)
print(video_data['image_name'])
image_name = video_data['image_name']
image_names = []
for caption in image_name:
single_caption = [int(item) for item in caption.split('=====')]
image_names.append(torch.as_tensor(single_caption))
print(image_names)
# print(video_name)
# print(video_data[2])
# for i in range(16):
# img0 = rearrange(video_data[0][0][i], 'c h w -> h w c')
# print('Label: {}'.format(video_data[1]))
# print(img0.shape)
# img0 = Image.fromarray(np.uint8(img0 * 255))
# img0.save('./img{}.jpg'.format(i))
|