Spaces:
Sleeping
Sleeping
File size: 46,749 Bytes
dcc8c59 9d0b2aa dcc8c59 228a5fd dcc8c59 21df5b4 dcc8c59 9d0b2aa dcc8c59 228a5fd dcc8c59 228a5fd dcc8c59 5e2bf3b dcc8c59 6b3879a dcc8c59 21df5b4 9d0b2aa dcc8c59 9d0b2aa dcc8c59 f049523 dcc8c59 6b3879a dcc8c59 6b3879a dcc8c59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 |
import sys
sys.path.append("../")
sys.path.append("../../")
import os
import json
import time
import psutil
import ffmpeg
import imageio
import argparse
from PIL import Image
import cv2
import torch
import numpy as np
import gradio as gr
from tools.painter import mask_painter
from tools.interact_tools import SamControler
from tools.misc import get_device
from tools.download_util import load_file_from_url
from matanyone_wrapper import matanyone
from matanyone.utils.get_default_model import get_matanyone_model
from matanyone.inference.inference_core import InferenceCore
def parse_augment():
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default=None)
parser.add_argument('--sam_model_type', type=str, default="vit_h")
parser.add_argument('--port', type=int, default=8000, help="only useful when running gradio applications")
parser.add_argument('--mask_save', default=False)
args = parser.parse_args()
if not args.device:
args.device = str(get_device())
return args
# SAM generator
class MaskGenerator():
def __init__(self, sam_checkpoint, args):
self.args = args
self.samcontroler = SamControler(sam_checkpoint, args.sam_model_type, args.device)
def first_frame_click(self, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True):
mask, logit, painted_image = self.samcontroler.first_frame_click(image, points, labels, multimask)
return mask, logit, painted_image
# convert points input to prompt state
def get_prompt(click_state, click_input):
inputs = json.loads(click_input)
points = click_state[0]
labels = click_state[1]
for input in inputs:
points.append(input[:2])
labels.append(input[2])
click_state[0] = points
click_state[1] = labels
prompt = {
"prompt_type":["click"],
"input_point":click_state[0],
"input_label":click_state[1],
"multimask_output":"True",
}
return prompt
def get_frames_from_image(image_input, image_state):
"""
Args:
video_path:str
timestamp:float64
Return
[[0:nearest_frame], [nearest_frame:], nearest_frame]
"""
user_name = time.time()
frames = [image_input] * 2 # hardcode: mimic a video with 2 frames
image_size = (frames[0].shape[0],frames[0].shape[1])
# initialize video_state
image_state = {
"user_name": user_name,
"image_name": "output.png",
"origin_images": frames,
"painted_images": frames.copy(),
"masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames),
"logits": [None]*len(frames),
"select_frame_number": 0,
"fps": None
}
image_info = "Image Name: N/A,\nFPS: N/A,\nTotal Frames: {},\nImage Size:{}".format(len(frames), image_size)
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(image_state["origin_images"][0])
return image_state, image_info, image_state["origin_images"][0], \
gr.update(visible=True, maximum=10, value=10), gr.update(visible=False, maximum=len(frames), value=len(frames)), \
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=True),\
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=False), \
gr.update(visible=False), gr.update(visible=True), \
gr.update(visible=True)
# extract frames from upload video
def get_frames_from_video(video_input, video_state):
"""
Args:
video_path:str
timestamp:float64
Return
[[0:nearest_frame], [nearest_frame:], nearest_frame]
"""
video_path = video_input
frames = []
user_name = time.time()
# extract Audio
try:
audio_path = video_input.replace(".mp4", "_audio.wav")
ffmpeg.input(video_path).output(audio_path, format='wav', acodec='pcm_s16le', ac=2, ar='44100').run(overwrite_output=True, quiet=True)
except Exception as e:
print(f"Audio extraction error: {str(e)}")
audio_path = "" # Set to "" if extraction fails
# print(f'audio_path: {audio_path}')
# extract frames
try:
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
while cap.isOpened():
ret, frame = cap.read()
if ret == True:
current_memory_usage = psutil.virtual_memory().percent
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
if current_memory_usage > 90:
break
else:
break
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e:
print("read_frame_source:{} error. {}\n".format(video_path, str(e)))
image_size = (frames[0].shape[0],frames[0].shape[1])
# resize if resolution too big
if image_size[0]>=1280 and image_size[0]>=1280:
scale = 1080 / min(image_size)
new_w = int(image_size[1] * scale)
new_h = int(image_size[0] * scale)
# update frames
frames = [cv2.resize(f, (new_w, new_h), interpolation=cv2.INTER_AREA) for f in frames]
# update image_size
image_size = (frames[0].shape[0],frames[0].shape[1])
# initialize video_state
video_state = {
"user_name": user_name,
"video_name": os.path.split(video_path)[-1],
"origin_images": frames,
"painted_images": frames.copy(),
"masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames),
"logits": [None]*len(frames),
"select_frame_number": 0,
"fps": fps,
"audio": audio_path
}
video_info = "Video Name: {},\nFPS: {},\nTotal Frames: {},\nImage Size:{}".format(video_state["video_name"], round(video_state["fps"], 0), len(frames), image_size)
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][0])
return video_state, video_info, video_state["origin_images"][0], \
gr.update(visible=True, maximum=len(frames), value=1), gr.update(visible=False, maximum=len(frames), value=len(frames)), \
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=True),\
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=False), \
gr.update(visible=False), gr.update(visible=True), \
gr.update(visible=True)
# get the select frame from gradio slider
def select_video_template(image_selection_slider, video_state, interactive_state):
image_selection_slider -= 1
video_state["select_frame_number"] = image_selection_slider
# once select a new template frame, set the image in sam
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider])
return video_state["painted_images"][image_selection_slider], video_state, interactive_state
def select_image_template(image_selection_slider, video_state, interactive_state):
image_selection_slider = 0 # fixed for image
video_state["select_frame_number"] = image_selection_slider
# once select a new template frame, set the image in sam
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider])
return video_state["painted_images"][image_selection_slider], video_state, interactive_state
# set the tracking end frame
def get_end_number(track_pause_number_slider, video_state, interactive_state):
interactive_state["track_end_number"] = track_pause_number_slider
return video_state["painted_images"][track_pause_number_slider],interactive_state
# use sam to get the mask
def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr.SelectData):
"""
Args:
template_frame: PIL.Image
point_prompt: flag for positive or negative button click
click_state: [[points], [labels]]
"""
if point_prompt == "Positive":
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
interactive_state["positive_click_times"] += 1
else:
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
interactive_state["negative_click_times"] += 1
# prompt for sam model
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][video_state["select_frame_number"]])
prompt = get_prompt(click_state=click_state, click_input=coordinate)
mask, logit, painted_image = model.first_frame_click(
image=video_state["origin_images"][video_state["select_frame_number"]],
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
video_state["masks"][video_state["select_frame_number"]] = mask
video_state["logits"][video_state["select_frame_number"]] = logit
video_state["painted_images"][video_state["select_frame_number"]] = painted_image
return painted_image, video_state, interactive_state
def add_multi_mask(video_state, interactive_state, mask_dropdown):
mask = video_state["masks"][video_state["select_frame_number"]]
interactive_state["multi_mask"]["masks"].append(mask)
interactive_state["multi_mask"]["mask_names"].append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
mask_dropdown.append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
select_frame = show_mask(video_state, interactive_state, mask_dropdown)
return interactive_state, gr.update(choices=interactive_state["multi_mask"]["mask_names"], value=mask_dropdown), select_frame, [[],[]]
def clear_click(video_state, click_state):
click_state = [[],[]]
template_frame = video_state["origin_images"][video_state["select_frame_number"]]
return template_frame, click_state
def remove_multi_mask(interactive_state, mask_dropdown):
interactive_state["multi_mask"]["mask_names"]= []
interactive_state["multi_mask"]["masks"] = []
return interactive_state, gr.update(choices=[],value=[])
def show_mask(video_state, interactive_state, mask_dropdown):
mask_dropdown.sort()
if video_state["origin_images"]:
select_frame = video_state["origin_images"][video_state["select_frame_number"]]
for i in range(len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
mask = interactive_state["multi_mask"]["masks"][mask_number]
select_frame = mask_painter(select_frame, mask.astype('uint8'), mask_color=mask_number+2)
return select_frame
# image matting
def image_matting(video_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size, refine_iter):
matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg)
if interactive_state["track_end_number"]:
following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]]
else:
following_frames = video_state["origin_images"][video_state["select_frame_number"]:]
if interactive_state["multi_mask"]["masks"]:
if len(mask_dropdown) == 0:
mask_dropdown = ["mask_001"]
mask_dropdown.sort()
template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1]))
for i in range(1,len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1)
video_state["masks"][video_state["select_frame_number"]]= template_mask
else:
template_mask = video_state["masks"][video_state["select_frame_number"]]
# operation error
if len(np.unique(template_mask))==1:
template_mask[0][0]=1
foreground, alpha = matanyone(matanyone_processor, following_frames, template_mask*255, r_erode=erode_kernel_size, r_dilate=dilate_kernel_size, n_warmup=refine_iter)
foreground_output = Image.fromarray(foreground[-1])
alpha_output = Image.fromarray(alpha[-1][:,:,0])
return foreground_output, alpha_output
# video matting
def video_matting(video_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size):
matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg)
if interactive_state["track_end_number"]:
following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]]
else:
following_frames = video_state["origin_images"][video_state["select_frame_number"]:]
if interactive_state["multi_mask"]["masks"]:
if len(mask_dropdown) == 0:
mask_dropdown = ["mask_001"]
mask_dropdown.sort()
template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1]))
for i in range(1,len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1)
video_state["masks"][video_state["select_frame_number"]]= template_mask
else:
template_mask = video_state["masks"][video_state["select_frame_number"]]
fps = video_state["fps"]
audio_path = video_state["audio"]
# operation error
if len(np.unique(template_mask))==1:
template_mask[0][0]=1
foreground, alpha = matanyone(matanyone_processor, following_frames, template_mask*255, r_erode=erode_kernel_size, r_dilate=dilate_kernel_size)
foreground_output = generate_video_from_frames(foreground, output_path="./results/{}_fg.mp4".format(video_state["video_name"]), fps=fps, audio_path=audio_path) # import video_input to name the output video
alpha_output = generate_video_from_frames(alpha, output_path="./results/{}_alpha.mp4".format(video_state["video_name"]), fps=fps, gray2rgb=True, audio_path=audio_path) # import video_input to name the output video
return foreground_output, alpha_output
def add_audio_to_video(video_path, audio_path, output_path):
try:
video_input = ffmpeg.input(video_path)
audio_input = ffmpeg.input(audio_path)
_ = (
ffmpeg
.output(video_input, audio_input, output_path, vcodec="copy", acodec="aac")
.run(overwrite_output=True, capture_stdout=True, capture_stderr=True)
)
return output_path
except ffmpeg.Error as e:
print(f"FFmpeg error:\n{e.stderr.decode()}")
return None
def generate_video_from_frames(frames, output_path, fps=30, gray2rgb=False, audio_path=""):
"""
Generates a video from a list of frames.
Args:
frames (list of numpy arrays): The frames to include in the video.
output_path (str): The path to save the generated video.
fps (int, optional): The frame rate of the output video. Defaults to 30.
"""
frames = torch.from_numpy(np.asarray(frames))
_, h, w, _ = frames.shape
if gray2rgb:
frames = np.repeat(frames, 3, axis=3)
if not os.path.exists(os.path.dirname(output_path)):
os.makedirs(os.path.dirname(output_path))
video_temp_path = output_path.replace(".mp4", "_temp.mp4")
# resize back to ensure input resolution
imageio.mimwrite(video_temp_path, frames, fps=fps, quality=7,
codec='libx264', ffmpeg_params=["-vf", f"scale={w}:{h}"])
# add audio to video if audio path exists
if audio_path != "" and os.path.exists(audio_path):
output_path = add_audio_to_video(video_temp_path, audio_path, output_path)
os.remove(video_temp_path)
return output_path
else:
return video_temp_path
# reset all states for a new input
def restart():
return {
"user_name": "",
"video_name": "",
"origin_images": None,
"painted_images": None,
"masks": None,
"inpaint_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 30
}, {
"inference_times": 0,
"negative_click_times" : 0,
"positive_click_times": 0,
"mask_save": args.mask_save,
"multi_mask": {
"mask_names": [],
"masks": []
},
"track_end_number": None,
}, [[],[]], None, None, \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),\
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
gr.update(visible=False), gr.update(visible=False, choices=[], value=[]), "", gr.update(visible=False)
# args, defined in track_anything.py
args = parse_augment()
sam_checkpoint_url_dict = {
'vit_h': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
'vit_l': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
'vit_b': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
}
checkpoint_folder = os.path.join('/home/user/app/', 'pretrained_models')
sam_checkpoint = load_file_from_url(sam_checkpoint_url_dict[args.sam_model_type], checkpoint_folder)
# initialize sams
model = MaskGenerator(sam_checkpoint, args)
# initialize matanyone
# load from ckpt
# pretrain_model_url = "https://github.com/pq-yang/MatAnyone/releases/download/v1.0.0"
# ckpt_path = load_file_from_url(os.path.join(pretrain_model_url, 'matanyone.pth'), checkpoint_folder)
# matanyone_model = get_matanyone_model(ckpt_path, args.device)
# load from Hugging Face
from matanyone.model.matanyone import MatAnyone
matanyone_model = MatAnyone.from_pretrained("PeiqingYang/MatAnyone")
matanyone_model = matanyone_model.to(args.device).eval()
matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg)
# download test samples
media_url = "https://github.com/pq-yang/MatAnyone/releases/download/media/"
test_sample_path = os.path.join('/home/user/app/hugging_face/', "test_sample/")
load_file_from_url(os.path.join(media_url, 'test-sample0-720p.mp4'), test_sample_path)
load_file_from_url(os.path.join(media_url, 'test-sample1-720p.mp4'), test_sample_path)
load_file_from_url(os.path.join(media_url, 'test-sample2-720p.mp4'), test_sample_path)
load_file_from_url(os.path.join(media_url, 'test-sample3-720p.mp4'), test_sample_path)
load_file_from_url(os.path.join(media_url, 'test-sample0.jpg'), test_sample_path)
load_file_from_url(os.path.join(media_url, 'test-sample1.jpg'), test_sample_path)
# download assets
assets_path = os.path.join('/home/user/app/hugging_face/', "assets/")
load_file_from_url(os.path.join(media_url, 'tutorial_single_target.mp4'), assets_path)
load_file_from_url(os.path.join(media_url, 'tutorial_multi_targets.mp4'), assets_path)
# documents
title = r"""<div class="multi-layer" align="center"><span>MatAnyone</span></div>
"""
description = r"""
<b>Official Gradio demo</b> for <a href='https://github.com/pq-yang/MatAnyone' target='_blank'><b>MatAnyone: Stable Video Matting with Consistent Memory Propagation</b></a>.<br>
π₯ MatAnyone is a practical human video matting framework supporting target assignment π―.<br>
πͺ Try to drop your video/image, assign the target masks with a few clicks, and get the the matting results π€‘!<br>
*Note: Due to the online GPU memory constraints, any input with too big resolution will be resized to 1080p.<br>*
π <b> If you encounter any issue (e.g., frozen video output) or wish to run on higher resolution inputs, please consider <u>duplicating this space</u> or
<u>launching the <a href='https://github.com/pq-yang/MatAnyone?tab=readme-ov-file#-interactive-demo' target='_blank'>demo</a> locally</u> following the GitHub instructions.</b>
"""
article = r"""<h3>
<b>If MatAnyone is helpful, please help to π the <a href='https://github.com/pq-yang/MatAnyone' target='_blank'>Github Repo</a>. Thanks!</b></h3>
---
π **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@InProceedings{yang2025matanyone,
title = {{MatAnyone}: Stable Video Matting with Consistent Memory Propagation},
author = {Yang, Peiqing and Zhou, Shangchen and Zhao, Jixin and Tao, Qingyi and Loy, Chen Change},
booktitle = {arXiv preprint arXiv:2501.14677},
year = {2025}
}
```
π **License**
<br>
This project is licensed under <a rel="license" href="https://github.com/pq-yang/MatAnyone/blob/main/LICENSE">S-Lab License 1.0</a>.
Redistribution and use for non-commercial purposes should follow this license.
<br>
π§ **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
<br>
π **Acknowledgement**
<br>
This project is built upon [Cutie](https://github.com/hkchengrex/Cutie), with the interactive demo adapted from [ProPainter](https://github.com/sczhou/ProPainter), leveraging segmentation capabilities from [Segment Anything](https://github.com/facebookresearch/segment-anything). Thanks for their awesome works!
"""
my_custom_css = """
.gradio-container {width: 85% !important; margin: 0 auto;}
.gr-monochrome-group {border-radius: 5px !important; border: revert-layer !important; border-width: 2px !important; color: black !important}
button {border-radius: 8px !important;}
.new_button {background-color: #171717 !important; color: #ffffff !important; border: none !important;}
.green_button {background-color: #4CAF50 !important; color: #ffffff !important; border: none !important;}
.new_button:hover {background-color: #4b4b4b !important;}
.green_button:hover {background-color: #77bd79 !important;}
.mask_button_group {gap: 10px !important;}
.video .wrap.svelte-lcpz3o {
display: flex !important;
align-items: center !important;
justify-content: center !important;
height: auto !important;
max-height: 300px !important;
}
.video .wrap.svelte-lcpz3o > :first-child {
height: auto !important;
width: 100% !important;
object-fit: contain !important;
}
.video .container.svelte-sxyn79 {
display: none !important;
}
.margin_center {width: 50% !important; margin: auto !important;}
.jc_center {justify-content: center !important;}
.video-title {
margin-bottom: 5px !important;
}
.custom-bg {
background-color: #f0f0f0;
padding: 10px;
border-radius: 10px;
}
<style>
@import url('https://fonts.googleapis.com/css2?family=Sarpanch:wght@400;500;600;700;800;900&family=Sen:[email protected]&family=Sixtyfour+Convergence&family=Stardos+Stencil:wght@400;700&display=swap');
body {
display: flex;
justify-content: center;
align-items: center;
height: 100vh;
margin: 0;
background-color: #0d1117;
font-family: Arial, sans-serif;
font-size: 18px;
}
.title-container {
text-align: center;
padding: 0;
margin: 0;
height: 5vh;
width: 80vw;
font-family: "Sarpanch", sans-serif;
font-weight: 60;
}
#custom-markdown {
font-family: "Roboto", sans-serif;
font-size: 18px;
color: #333333;
font-weight: bold;
}
small {
font-size: 60%;
}
</style>
"""
with gr.Blocks(theme=gr.themes.Monochrome(), css=my_custom_css) as demo:
gr.HTML('''
<div class="title-container">
<h1 class="title is-2 publication-title"
style="font-size:50px; font-family: 'Sarpanch', serif;
background: linear-gradient(to right, #d231d8, #2dc464);
display: inline-block; -webkit-background-clip: text;
-webkit-text-fill-color: transparent;">
MatAnyone
</h1>
</div>
''')
gr.Markdown(description)
with gr.Group(elem_classes="gr-monochrome-group", visible=True):
with gr.Row():
with gr.Accordion("π Video Tutorial (click to expand)", open=False, elem_classes="custom-bg"):
with gr.Row():
with gr.Column():
gr.Markdown("### Case 1: Single Target")
gr.Video(value="/home/user/app/hugging_face/assets/tutorial_single_target.mp4", elem_classes="video")
with gr.Column():
gr.Markdown("### Case 2: Multiple Targets")
gr.Video(value="/home/user/app/hugging_face/assets/tutorial_multi_targets.mp4", elem_classes="video")
with gr.Tabs():
with gr.TabItem("Video"):
click_state = gr.State([[],[]])
interactive_state = gr.State({
"inference_times": 0,
"negative_click_times" : 0,
"positive_click_times": 0,
"mask_save": args.mask_save,
"multi_mask": {
"mask_names": [],
"masks": []
},
"track_end_number": None,
}
)
video_state = gr.State(
{
"user_name": "",
"video_name": "",
"origin_images": None,
"painted_images": None,
"masks": None,
"inpaint_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 30,
"audio": "",
}
)
with gr.Group(elem_classes="gr-monochrome-group", visible=True):
with gr.Row():
with gr.Accordion('MatAnyone Settings (click to expand)', open=False):
with gr.Row():
erode_kernel_size = gr.Slider(label='Erode Kernel Size',
minimum=0,
maximum=30,
step=1,
value=10,
info="Erosion on the added mask",
interactive=True)
dilate_kernel_size = gr.Slider(label='Dilate Kernel Size',
minimum=0,
maximum=30,
step=1,
value=10,
info="Dilation on the added mask",
interactive=True)
with gr.Row():
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Start Frame", info="Choose the start frame for target assignment and video matting", visible=False)
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False)
with gr.Row():
point_prompt = gr.Radio(
choices=["Positive", "Negative"],
value="Positive",
label="Point Prompt",
info="Click to add positive or negative point for target mask",
interactive=True,
visible=False,
min_width=100,
scale=1)
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask Selection", info="Choose 1~all mask(s) added in Step 2", visible=False)
gr.Markdown("---")
with gr.Column():
# input video
with gr.Row(equal_height=True):
with gr.Column(scale=2):
gr.Markdown("## Step1: Upload video")
with gr.Column(scale=2):
step2_title = gr.Markdown("## Step2: Add masks <small>(Several clicks then **`Add Mask`** <u>one by one</u>)</small>", visible=False)
with gr.Row(equal_height=True):
with gr.Column(scale=2):
video_input = gr.Video(label="Input Video", elem_classes="video")
extract_frames_button = gr.Button(value="Load Video", interactive=True, elem_classes="new_button")
with gr.Column(scale=2):
video_info = gr.Textbox(label="Video Info", visible=False)
template_frame = gr.Image(label="Start Frame", type="pil",interactive=True, elem_id="template_frame", visible=False, elem_classes="image")
with gr.Row(equal_height=True, elem_classes="mask_button_group"):
clear_button_click = gr.Button(value="Clear Clicks", interactive=True, visible=False, elem_classes="new_button", min_width=100)
add_mask_button = gr.Button(value="Add Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100)
remove_mask_button = gr.Button(value="Remove Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100) # no use
matting_button = gr.Button(value="Video Matting", interactive=True, visible=False, elem_classes="green_button", min_width=100)
gr.HTML('<hr style="border: none; height: 1.5px; background: linear-gradient(to right, #a566b4, #74a781);margin: 5px 0;">')
# output video
with gr.Row(equal_height=True):
with gr.Column(scale=2):
foreground_video_output = gr.Video(label="Foreground Output", visible=False, elem_classes="video")
foreground_output_button = gr.Button(value="Foreground Output", visible=False, elem_classes="new_button")
with gr.Column(scale=2):
alpha_video_output = gr.Video(label="Alpha Output", visible=False, elem_classes="video")
alpha_output_button = gr.Button(value="Alpha Mask Output", visible=False, elem_classes="new_button")
# first step: get the video information
extract_frames_button.click(
fn=get_frames_from_video,
inputs=[
video_input, video_state
],
outputs=[video_state, video_info, template_frame,
image_selection_slider, track_pause_number_slider, point_prompt, clear_button_click, add_mask_button, matting_button, template_frame,
foreground_video_output, alpha_video_output, foreground_output_button, alpha_output_button, mask_dropdown, step2_title]
)
# second step: select images from slider
image_selection_slider.release(fn=select_video_template,
inputs=[image_selection_slider, video_state, interactive_state],
outputs=[template_frame, video_state, interactive_state], api_name="select_image")
track_pause_number_slider.release(fn=get_end_number,
inputs=[track_pause_number_slider, video_state, interactive_state],
outputs=[template_frame, interactive_state], api_name="end_image")
# click select image to get mask using sam
template_frame.select(
fn=sam_refine,
inputs=[video_state, point_prompt, click_state, interactive_state],
outputs=[template_frame, video_state, interactive_state]
)
# add different mask
add_mask_button.click(
fn=add_multi_mask,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[interactive_state, mask_dropdown, template_frame, click_state]
)
remove_mask_button.click(
fn=remove_multi_mask,
inputs=[interactive_state, mask_dropdown],
outputs=[interactive_state, mask_dropdown]
)
# video matting
matting_button.click(
fn=video_matting,
inputs=[video_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size],
outputs=[foreground_video_output, alpha_video_output]
)
# click to get mask
mask_dropdown.change(
fn=show_mask,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[template_frame]
)
# clear input
video_input.change(
fn=restart,
inputs=[],
outputs=[
video_state,
interactive_state,
click_state,
foreground_video_output, alpha_video_output,
template_frame,
image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click,
add_mask_button, matting_button, template_frame, foreground_video_output, alpha_video_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, video_info, step2_title
],
queue=False,
show_progress=False)
video_input.clear(
fn=restart,
inputs=[],
outputs=[
video_state,
interactive_state,
click_state,
foreground_video_output, alpha_video_output,
template_frame,
image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click,
add_mask_button, matting_button, template_frame, foreground_video_output, alpha_video_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, video_info, step2_title
],
queue=False,
show_progress=False)
# points clear
clear_button_click.click(
fn = clear_click,
inputs = [video_state, click_state,],
outputs = [template_frame,click_state],
)
# set example
gr.Markdown("---")
gr.Markdown("## Examples")
gr.Examples(
examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["test-sample0-720p.mp4", "test-sample1-720p.mp4", "test-sample2-720p.mp4", "test-sample3-720p.mp4"]],
inputs=[video_input],
)
with gr.TabItem("Image"):
click_state = gr.State([[],[]])
interactive_state = gr.State({
"inference_times": 0,
"negative_click_times" : 0,
"positive_click_times": 0,
"mask_save": args.mask_save,
"multi_mask": {
"mask_names": [],
"masks": []
},
"track_end_number": None,
}
)
image_state = gr.State(
{
"user_name": "",
"image_name": "",
"origin_images": None,
"painted_images": None,
"masks": None,
"inpaint_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 30
}
)
with gr.Group(elem_classes="gr-monochrome-group", visible=True):
with gr.Row():
with gr.Accordion('MatAnyone Settings (click to expand)', open=False):
with gr.Row():
erode_kernel_size = gr.Slider(label='Erode Kernel Size',
minimum=0,
maximum=30,
step=1,
value=10,
info="Erosion on the added mask",
interactive=True)
dilate_kernel_size = gr.Slider(label='Dilate Kernel Size',
minimum=0,
maximum=30,
step=1,
value=10,
info="Dilation on the added mask",
interactive=True)
with gr.Row():
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Num of Refinement Iterations", info="More iterations β More details & More time", visible=False)
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False)
with gr.Row():
point_prompt = gr.Radio(
choices=["Positive", "Negative"],
value="Positive",
label="Point Prompt",
info="Click to add positive or negative point for target mask",
interactive=True,
visible=False,
min_width=100,
scale=1)
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask Selection", info="Choose 1~all mask(s) added in Step 2", visible=False)
gr.Markdown("---")
with gr.Column():
# input image
with gr.Row(equal_height=True):
with gr.Column(scale=2):
gr.Markdown("## Step1: Upload image")
with gr.Column(scale=2):
step2_title = gr.Markdown("## Step2: Add masks <small>(Several clicks then **`Add Mask`** <u>one by one</u>)</small>", visible=False)
with gr.Row(equal_height=True):
with gr.Column(scale=2):
image_input = gr.Image(label="Input Image", elem_classes="image")
extract_frames_button = gr.Button(value="Load Image", interactive=True, elem_classes="new_button")
with gr.Column(scale=2):
image_info = gr.Textbox(label="Image Info", visible=False)
template_frame = gr.Image(type="pil", label="Start Frame", interactive=True, elem_id="template_frame", visible=False, elem_classes="image")
with gr.Row(equal_height=True, elem_classes="mask_button_group"):
clear_button_click = gr.Button(value="Clear Clicks", interactive=True, visible=False, elem_classes="new_button", min_width=100)
add_mask_button = gr.Button(value="Add Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100)
remove_mask_button = gr.Button(value="Remove Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100)
matting_button = gr.Button(value="Image Matting", interactive=True, visible=False, elem_classes="green_button", min_width=100)
gr.HTML('<hr style="border: none; height: 1.5px; background: linear-gradient(to right, #a566b4, #74a781);margin: 5px 0;">')
# output image
with gr.Row(equal_height=True):
with gr.Column(scale=2):
foreground_image_output = gr.Image(type="pil", label="Foreground Output", visible=False, elem_classes="image")
foreground_output_button = gr.Button(value="Foreground Output", visible=False, elem_classes="new_button")
with gr.Column(scale=2):
alpha_image_output = gr.Image(type="pil", label="Alpha Output", visible=False, elem_classes="image")
alpha_output_button = gr.Button(value="Alpha Mask Output", visible=False, elem_classes="new_button")
# first step: get the image information
extract_frames_button.click(
fn=get_frames_from_image,
inputs=[
image_input, image_state
],
outputs=[image_state, image_info, template_frame,
image_selection_slider, track_pause_number_slider,point_prompt, clear_button_click, add_mask_button, matting_button, template_frame,
foreground_image_output, alpha_image_output, foreground_output_button, alpha_output_button, mask_dropdown, step2_title]
)
# second step: select images from slider
image_selection_slider.release(fn=select_image_template,
inputs=[image_selection_slider, image_state, interactive_state],
outputs=[template_frame, image_state, interactive_state], api_name="select_image")
track_pause_number_slider.release(fn=get_end_number,
inputs=[track_pause_number_slider, image_state, interactive_state],
outputs=[template_frame, interactive_state], api_name="end_image")
# click select image to get mask using sam
template_frame.select(
fn=sam_refine,
inputs=[image_state, point_prompt, click_state, interactive_state],
outputs=[template_frame, image_state, interactive_state]
)
# add different mask
add_mask_button.click(
fn=add_multi_mask,
inputs=[image_state, interactive_state, mask_dropdown],
outputs=[interactive_state, mask_dropdown, template_frame, click_state]
)
remove_mask_button.click(
fn=remove_multi_mask,
inputs=[interactive_state, mask_dropdown],
outputs=[interactive_state, mask_dropdown]
)
# image matting
matting_button.click(
fn=image_matting,
inputs=[image_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size, image_selection_slider],
outputs=[foreground_image_output, alpha_image_output]
)
# click to get mask
mask_dropdown.change(
fn=show_mask,
inputs=[image_state, interactive_state, mask_dropdown],
outputs=[template_frame]
)
# clear input
image_input.change(
fn=restart,
inputs=[],
outputs=[
image_state,
interactive_state,
click_state,
foreground_image_output, alpha_image_output,
template_frame,
image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click,
add_mask_button, matting_button, template_frame, foreground_image_output, alpha_image_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, image_info, step2_title
],
queue=False,
show_progress=False)
image_input.clear(
fn=restart,
inputs=[],
outputs=[
image_state,
interactive_state,
click_state,
foreground_image_output, alpha_image_output,
template_frame,
image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click,
add_mask_button, matting_button, template_frame, foreground_image_output, alpha_image_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, image_info, step2_title
],
queue=False,
show_progress=False)
# points clear
clear_button_click.click(
fn = clear_click,
inputs = [image_state, click_state,],
outputs = [template_frame,click_state],
)
# set example
gr.Markdown("---")
gr.Markdown("## Examples")
gr.Examples(
examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["test-sample0.jpg", "test-sample1.jpg"]],
inputs=[image_input],
)
gr.Markdown(article)
demo.queue()
demo.launch(debug=True) |