File size: 46,749 Bytes
dcc8c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d0b2aa
 
dcc8c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228a5fd
dcc8c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21df5b4
 
 
 
 
 
 
 
 
 
dcc8c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d0b2aa
 
dcc8c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228a5fd
dcc8c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228a5fd
dcc8c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e2bf3b
 
 
 
 
 
 
 
dcc8c59
 
 
 
 
 
6b3879a
 
 
 
 
 
dcc8c59
 
 
 
 
 
 
 
 
 
 
 
 
21df5b4
9d0b2aa
 
 
dcc8c59
9d0b2aa
 
dcc8c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f049523
dcc8c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b3879a
dcc8c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b3879a
dcc8c59
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
import sys
sys.path.append("../")
sys.path.append("../../")

import os
import json
import time
import psutil
import ffmpeg
import imageio
import argparse
from PIL import Image

import cv2
import torch
import numpy as np
import gradio as gr
 
from tools.painter import mask_painter
from tools.interact_tools import SamControler
from tools.misc import get_device
from tools.download_util import load_file_from_url

from matanyone_wrapper import matanyone
from matanyone.utils.get_default_model import get_matanyone_model
from matanyone.inference.inference_core import InferenceCore

def parse_augment():
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default=None)
    parser.add_argument('--sam_model_type', type=str, default="vit_h")
    parser.add_argument('--port', type=int, default=8000, help="only useful when running gradio applications")  
    parser.add_argument('--mask_save', default=False)
    args = parser.parse_args()
    
    if not args.device:
        args.device = str(get_device())

    return args 

# SAM generator
class MaskGenerator():
    def __init__(self, sam_checkpoint, args):
        self.args = args
        self.samcontroler = SamControler(sam_checkpoint, args.sam_model_type, args.device)
       
    def first_frame_click(self, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True):
        mask, logit, painted_image = self.samcontroler.first_frame_click(image, points, labels, multimask)
        return mask, logit, painted_image
    
# convert points input to prompt state
def get_prompt(click_state, click_input):
    inputs = json.loads(click_input)
    points = click_state[0]
    labels = click_state[1]
    for input in inputs:
        points.append(input[:2])
        labels.append(input[2])
    click_state[0] = points
    click_state[1] = labels
    prompt = {
        "prompt_type":["click"],
        "input_point":click_state[0],
        "input_label":click_state[1],
        "multimask_output":"True",
    }
    return prompt

def get_frames_from_image(image_input, image_state):
    """
    Args:
        video_path:str
        timestamp:float64
    Return 
        [[0:nearest_frame], [nearest_frame:], nearest_frame]
    """

    user_name = time.time()
    frames = [image_input] * 2  # hardcode: mimic a video with 2 frames
    image_size = (frames[0].shape[0],frames[0].shape[1]) 
    # initialize video_state
    image_state = {
        "user_name": user_name,
        "image_name": "output.png",
        "origin_images": frames,
        "painted_images": frames.copy(),
        "masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames),
        "logits": [None]*len(frames),
        "select_frame_number": 0,
        "fps": None
        }
    image_info = "Image Name: N/A,\nFPS: N/A,\nTotal Frames: {},\nImage Size:{}".format(len(frames), image_size)
    model.samcontroler.sam_controler.reset_image() 
    model.samcontroler.sam_controler.set_image(image_state["origin_images"][0])
    return image_state, image_info, image_state["origin_images"][0], \
                        gr.update(visible=True, maximum=10, value=10), gr.update(visible=False, maximum=len(frames), value=len(frames)), \
                        gr.update(visible=True), gr.update(visible=True), \
                        gr.update(visible=True), gr.update(visible=True),\
                        gr.update(visible=True), gr.update(visible=True), \
                        gr.update(visible=True), gr.update(visible=False), \
                        gr.update(visible=False), gr.update(visible=True), \
                        gr.update(visible=True)

# extract frames from upload video
def get_frames_from_video(video_input, video_state):
    """
    Args:
        video_path:str
        timestamp:float64
    Return 
        [[0:nearest_frame], [nearest_frame:], nearest_frame]
    """
    video_path = video_input
    frames = []
    user_name = time.time()

    # extract Audio
    try:
        audio_path = video_input.replace(".mp4", "_audio.wav")
        ffmpeg.input(video_path).output(audio_path, format='wav', acodec='pcm_s16le', ac=2, ar='44100').run(overwrite_output=True, quiet=True)
    except Exception as e:
        print(f"Audio extraction error: {str(e)}")
        audio_path = ""  # Set to "" if extraction fails
    # print(f'audio_path: {audio_path}')
    
    # extract frames
    try:
        cap = cv2.VideoCapture(video_path)
        fps = cap.get(cv2.CAP_PROP_FPS)
        while cap.isOpened():
            ret, frame = cap.read()
            if ret == True:
                current_memory_usage = psutil.virtual_memory().percent
                frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
                if current_memory_usage > 90:
                    break
            else:
                break
    except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e:
        print("read_frame_source:{} error. {}\n".format(video_path, str(e)))
    image_size = (frames[0].shape[0],frames[0].shape[1]) 

    # resize if resolution too big
    if image_size[0]>=1280 and image_size[0]>=1280:
        scale = 1080 / min(image_size)
        new_w = int(image_size[1] * scale)
        new_h = int(image_size[0] * scale)
        # update frames
        frames = [cv2.resize(f, (new_w, new_h), interpolation=cv2.INTER_AREA) for f in frames]
        # update image_size
        image_size = (frames[0].shape[0],frames[0].shape[1]) 

    # initialize video_state
    video_state = {
        "user_name": user_name,
        "video_name": os.path.split(video_path)[-1],
        "origin_images": frames,
        "painted_images": frames.copy(),
        "masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames),
        "logits": [None]*len(frames),
        "select_frame_number": 0,
        "fps": fps,
        "audio": audio_path
        }
    video_info = "Video Name: {},\nFPS: {},\nTotal Frames: {},\nImage Size:{}".format(video_state["video_name"], round(video_state["fps"], 0), len(frames), image_size)
    model.samcontroler.sam_controler.reset_image() 
    model.samcontroler.sam_controler.set_image(video_state["origin_images"][0])
    return video_state, video_info, video_state["origin_images"][0], \
                        gr.update(visible=True, maximum=len(frames), value=1), gr.update(visible=False, maximum=len(frames), value=len(frames)), \
                        gr.update(visible=True), gr.update(visible=True), \
                        gr.update(visible=True), gr.update(visible=True),\
                        gr.update(visible=True), gr.update(visible=True), \
                        gr.update(visible=True), gr.update(visible=False), \
                        gr.update(visible=False), gr.update(visible=True), \
                        gr.update(visible=True)

# get the select frame from gradio slider
def select_video_template(image_selection_slider, video_state, interactive_state):

    image_selection_slider -= 1
    video_state["select_frame_number"] = image_selection_slider

    # once select a new template frame, set the image in sam
    model.samcontroler.sam_controler.reset_image()
    model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider])

    return video_state["painted_images"][image_selection_slider], video_state, interactive_state

def select_image_template(image_selection_slider, video_state, interactive_state):

    image_selection_slider = 0 # fixed for image
    video_state["select_frame_number"] = image_selection_slider

    # once select a new template frame, set the image in sam
    model.samcontroler.sam_controler.reset_image()
    model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider])

    return video_state["painted_images"][image_selection_slider], video_state, interactive_state

# set the tracking end frame
def get_end_number(track_pause_number_slider, video_state, interactive_state):
    interactive_state["track_end_number"] = track_pause_number_slider

    return video_state["painted_images"][track_pause_number_slider],interactive_state

# use sam to get the mask
def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr.SelectData):
    """
    Args:
        template_frame: PIL.Image
        point_prompt: flag for positive or negative button click
        click_state: [[points], [labels]]
    """
    if point_prompt == "Positive":
        coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
        interactive_state["positive_click_times"] += 1
    else:
        coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
        interactive_state["negative_click_times"] += 1
    
    # prompt for sam model
    model.samcontroler.sam_controler.reset_image()
    model.samcontroler.sam_controler.set_image(video_state["origin_images"][video_state["select_frame_number"]])
    prompt = get_prompt(click_state=click_state, click_input=coordinate)

    mask, logit, painted_image = model.first_frame_click( 
                                                      image=video_state["origin_images"][video_state["select_frame_number"]], 
                                                      points=np.array(prompt["input_point"]),
                                                      labels=np.array(prompt["input_label"]),
                                                      multimask=prompt["multimask_output"],
                                                      )
    video_state["masks"][video_state["select_frame_number"]] = mask
    video_state["logits"][video_state["select_frame_number"]] = logit
    video_state["painted_images"][video_state["select_frame_number"]] = painted_image

    return painted_image, video_state, interactive_state

def add_multi_mask(video_state, interactive_state, mask_dropdown):
    mask = video_state["masks"][video_state["select_frame_number"]]
    interactive_state["multi_mask"]["masks"].append(mask)
    interactive_state["multi_mask"]["mask_names"].append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
    mask_dropdown.append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
    select_frame = show_mask(video_state, interactive_state, mask_dropdown)

    return interactive_state, gr.update(choices=interactive_state["multi_mask"]["mask_names"], value=mask_dropdown), select_frame, [[],[]]

def clear_click(video_state, click_state):
    click_state = [[],[]]
    template_frame = video_state["origin_images"][video_state["select_frame_number"]]
    return template_frame, click_state

def remove_multi_mask(interactive_state, mask_dropdown):
    interactive_state["multi_mask"]["mask_names"]= []
    interactive_state["multi_mask"]["masks"] = []

    return interactive_state, gr.update(choices=[],value=[])

def show_mask(video_state, interactive_state, mask_dropdown):
    mask_dropdown.sort()
    if video_state["origin_images"]:
        select_frame = video_state["origin_images"][video_state["select_frame_number"]]
        for i in range(len(mask_dropdown)):
            mask_number = int(mask_dropdown[i].split("_")[1]) - 1
            mask = interactive_state["multi_mask"]["masks"][mask_number]
            select_frame = mask_painter(select_frame, mask.astype('uint8'), mask_color=mask_number+2)
        
        return select_frame

# image matting
def image_matting(video_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size, refine_iter):
    matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg)
    if interactive_state["track_end_number"]:
        following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]]
    else:
        following_frames = video_state["origin_images"][video_state["select_frame_number"]:]

    if interactive_state["multi_mask"]["masks"]:
        if len(mask_dropdown) == 0:
            mask_dropdown = ["mask_001"]
        mask_dropdown.sort()
        template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1]))
        for i in range(1,len(mask_dropdown)):
            mask_number = int(mask_dropdown[i].split("_")[1]) - 1 
            template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1)
        video_state["masks"][video_state["select_frame_number"]]= template_mask
    else:      
        template_mask = video_state["masks"][video_state["select_frame_number"]]

    # operation error
    if len(np.unique(template_mask))==1:
        template_mask[0][0]=1
    foreground, alpha = matanyone(matanyone_processor, following_frames, template_mask*255, r_erode=erode_kernel_size, r_dilate=dilate_kernel_size, n_warmup=refine_iter)
    foreground_output = Image.fromarray(foreground[-1])
    alpha_output = Image.fromarray(alpha[-1][:,:,0])
    return foreground_output, alpha_output

# video matting
def video_matting(video_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size):
    matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg)
    if interactive_state["track_end_number"]:
        following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]]
    else:
        following_frames = video_state["origin_images"][video_state["select_frame_number"]:]

    if interactive_state["multi_mask"]["masks"]:
        if len(mask_dropdown) == 0:
            mask_dropdown = ["mask_001"]
        mask_dropdown.sort()
        template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1]))
        for i in range(1,len(mask_dropdown)):
            mask_number = int(mask_dropdown[i].split("_")[1]) - 1 
            template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1)
        video_state["masks"][video_state["select_frame_number"]]= template_mask
    else:      
        template_mask = video_state["masks"][video_state["select_frame_number"]]
    fps = video_state["fps"]

    audio_path = video_state["audio"]

    # operation error
    if len(np.unique(template_mask))==1:
        template_mask[0][0]=1
    foreground, alpha = matanyone(matanyone_processor, following_frames, template_mask*255, r_erode=erode_kernel_size, r_dilate=dilate_kernel_size)

    foreground_output = generate_video_from_frames(foreground, output_path="./results/{}_fg.mp4".format(video_state["video_name"]), fps=fps, audio_path=audio_path) # import video_input to name the output video
    alpha_output = generate_video_from_frames(alpha, output_path="./results/{}_alpha.mp4".format(video_state["video_name"]), fps=fps, gray2rgb=True, audio_path=audio_path) # import video_input to name the output video

    return foreground_output, alpha_output


def add_audio_to_video(video_path, audio_path, output_path):
    try:
        video_input = ffmpeg.input(video_path)
        audio_input = ffmpeg.input(audio_path)

        _ = (
            ffmpeg
            .output(video_input, audio_input, output_path, vcodec="copy", acodec="aac")
            .run(overwrite_output=True, capture_stdout=True, capture_stderr=True)
        )
        return output_path
    except ffmpeg.Error as e:
        print(f"FFmpeg error:\n{e.stderr.decode()}")
        return None


def generate_video_from_frames(frames, output_path, fps=30, gray2rgb=False, audio_path=""):
    """
    Generates a video from a list of frames.
    
    Args:
        frames (list of numpy arrays): The frames to include in the video.
        output_path (str): The path to save the generated video.
        fps (int, optional): The frame rate of the output video. Defaults to 30.
    """
    frames = torch.from_numpy(np.asarray(frames))
    _, h, w, _ = frames.shape
    if gray2rgb:
        frames = np.repeat(frames, 3, axis=3)

    if not os.path.exists(os.path.dirname(output_path)):
        os.makedirs(os.path.dirname(output_path))
    video_temp_path = output_path.replace(".mp4", "_temp.mp4")
    
    # resize back to ensure input resolution
    imageio.mimwrite(video_temp_path, frames, fps=fps, quality=7, 
                     codec='libx264', ffmpeg_params=["-vf", f"scale={w}:{h}"])
    
    # add audio to video if audio path exists
    if audio_path != "" and os.path.exists(audio_path):
        output_path = add_audio_to_video(video_temp_path, audio_path, output_path)    
        os.remove(video_temp_path)
        return output_path
    else:
        return video_temp_path

# reset all states for a new input
def restart():
    return {
            "user_name": "",
            "video_name": "",
            "origin_images": None,
            "painted_images": None,
            "masks": None,
            "inpaint_masks": None,
            "logits": None,
            "select_frame_number": 0,
            "fps": 30
        }, {
            "inference_times": 0,
            "negative_click_times" : 0,
            "positive_click_times": 0,
            "mask_save": args.mask_save,
            "multi_mask": {
                "mask_names": [],
                "masks": []
            },
            "track_end_number": None,
        }, [[],[]], None, None, \
        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),\
        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
        gr.update(visible=False), gr.update(visible=False, choices=[], value=[]), "", gr.update(visible=False)

# args, defined in track_anything.py
args = parse_augment()
sam_checkpoint_url_dict = {
    'vit_h': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
    'vit_l': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
    'vit_b': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
}
checkpoint_folder = os.path.join('/home/user/app/', 'pretrained_models')

sam_checkpoint = load_file_from_url(sam_checkpoint_url_dict[args.sam_model_type], checkpoint_folder)
# initialize sams
model = MaskGenerator(sam_checkpoint, args)

# initialize matanyone
# load from ckpt
# pretrain_model_url = "https://github.com/pq-yang/MatAnyone/releases/download/v1.0.0"
# ckpt_path = load_file_from_url(os.path.join(pretrain_model_url, 'matanyone.pth'), checkpoint_folder)
# matanyone_model = get_matanyone_model(ckpt_path, args.device)
# load from Hugging Face
from matanyone.model.matanyone import MatAnyone
matanyone_model = MatAnyone.from_pretrained("PeiqingYang/MatAnyone")

matanyone_model = matanyone_model.to(args.device).eval()
matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg)

# download test samples
media_url = "https://github.com/pq-yang/MatAnyone/releases/download/media/"
test_sample_path = os.path.join('/home/user/app/hugging_face/', "test_sample/")
load_file_from_url(os.path.join(media_url, 'test-sample0-720p.mp4'), test_sample_path)
load_file_from_url(os.path.join(media_url, 'test-sample1-720p.mp4'), test_sample_path)
load_file_from_url(os.path.join(media_url, 'test-sample2-720p.mp4'), test_sample_path)
load_file_from_url(os.path.join(media_url, 'test-sample3-720p.mp4'), test_sample_path)
load_file_from_url(os.path.join(media_url, 'test-sample0.jpg'), test_sample_path)
load_file_from_url(os.path.join(media_url, 'test-sample1.jpg'), test_sample_path)

# download assets
assets_path = os.path.join('/home/user/app/hugging_face/', "assets/")
load_file_from_url(os.path.join(media_url, 'tutorial_single_target.mp4'), assets_path)
load_file_from_url(os.path.join(media_url, 'tutorial_multi_targets.mp4'), assets_path)

# documents
title = r"""<div class="multi-layer" align="center"><span>MatAnyone</span></div>
"""
description = r"""
<b>Official Gradio demo</b> for <a href='https://github.com/pq-yang/MatAnyone' target='_blank'><b>MatAnyone: Stable Video Matting with Consistent Memory Propagation</b></a>.<br>
πŸ”₯ MatAnyone is a practical human video matting framework supporting target assignment 🎯.<br>
πŸŽͺ Try to drop your video/image, assign the target masks with a few clicks, and get the the matting results 🀑!<br>

*Note: Due to the online GPU memory constraints, any input with too big resolution will be resized to 1080p.<br>*
πŸš€ <b> If you encounter any issue (e.g., frozen video output) or wish to run on higher resolution inputs, please consider <u>duplicating this space</u> or 
<u>launching the <a href='https://github.com/pq-yang/MatAnyone?tab=readme-ov-file#-interactive-demo' target='_blank'>demo</a> locally</u> following the GitHub instructions.</b>
"""
article = r"""<h3>
<b>If MatAnyone is helpful, please help to 🌟 the <a href='https://github.com/pq-yang/MatAnyone' target='_blank'>Github Repo</a>. Thanks!</b></h3>

---

πŸ“‘ **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@InProceedings{yang2025matanyone,
     title     = {{MatAnyone}: Stable Video Matting with Consistent Memory Propagation},
     author    = {Yang, Peiqing and Zhou, Shangchen and Zhao, Jixin and Tao, Qingyi and Loy, Chen Change},
     booktitle = {arXiv preprint arXiv:2501.14677},
     year      = {2025}
}
```
πŸ“ **License**
<br>
This project is licensed under <a rel="license" href="https://github.com/pq-yang/MatAnyone/blob/main/LICENSE">S-Lab License 1.0</a>. 
Redistribution and use for non-commercial purposes should follow this license.
<br>
πŸ“§ **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
<br>
πŸ‘ **Acknowledgement**
<br>
This project is built upon [Cutie](https://github.com/hkchengrex/Cutie), with the interactive demo adapted from [ProPainter](https://github.com/sczhou/ProPainter), leveraging segmentation capabilities from [Segment Anything](https://github.com/facebookresearch/segment-anything). Thanks for their awesome works!
"""

my_custom_css = """
.gradio-container {width: 85% !important; margin: 0 auto;}
.gr-monochrome-group {border-radius: 5px !important; border: revert-layer !important; border-width: 2px !important; color: black !important}
button {border-radius: 8px !important;}
.new_button {background-color: #171717 !important; color: #ffffff !important; border: none !important;}
.green_button {background-color: #4CAF50 !important; color: #ffffff !important; border: none !important;}
.new_button:hover {background-color: #4b4b4b !important;}
.green_button:hover {background-color: #77bd79 !important;}

.mask_button_group {gap: 10px !important;}
.video .wrap.svelte-lcpz3o {
    display: flex !important;
    align-items: center !important;
    justify-content: center !important;
    height: auto !important;
    max-height: 300px !important;
}
.video .wrap.svelte-lcpz3o > :first-child {
    height: auto !important;
    width: 100% !important;
    object-fit: contain !important;
}
.video .container.svelte-sxyn79 {
    display: none !important;
}
.margin_center {width: 50% !important; margin: auto !important;}
.jc_center {justify-content: center !important;}
.video-title {
    margin-bottom: 5px !important;
}
.custom-bg {
        background-color: #f0f0f0;
        padding: 10px;
        border-radius: 10px;
    }

<style>
@import url('https://fonts.googleapis.com/css2?family=Sarpanch:wght@400;500;600;700;800;900&family=Sen:[email protected]&family=Sixtyfour+Convergence&family=Stardos+Stencil:wght@400;700&display=swap');
body {
    display: flex;
    justify-content: center;
    align-items: center;
    height: 100vh;
    margin: 0;
    background-color: #0d1117;
    font-family: Arial, sans-serif;
    font-size: 18px;
    }
.title-container {
    text-align: center;
    padding: 0;
    margin: 0;
    height: 5vh;
    width: 80vw;
    font-family: "Sarpanch", sans-serif;
    font-weight: 60;
}
#custom-markdown {
    font-family: "Roboto", sans-serif;
    font-size: 18px;
    color: #333333;
    font-weight: bold;
}
small {
    font-size: 60%;
}
</style>
"""

with gr.Blocks(theme=gr.themes.Monochrome(), css=my_custom_css) as demo:
    gr.HTML('''
        <div class="title-container">
            <h1 class="title is-2 publication-title"
                style="font-size:50px; font-family: 'Sarpanch', serif; 
                    background: linear-gradient(to right, #d231d8, #2dc464); 
                    display: inline-block; -webkit-background-clip: text; 
                    -webkit-text-fill-color: transparent;">
                MatAnyone
            </h1>
        </div>
    ''')

    gr.Markdown(description)

    with gr.Group(elem_classes="gr-monochrome-group", visible=True):
        with gr.Row():
            with gr.Accordion("πŸ“• Video Tutorial (click to expand)", open=False, elem_classes="custom-bg"):
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("### Case 1: Single Target")
                        gr.Video(value="/home/user/app/hugging_face/assets/tutorial_single_target.mp4", elem_classes="video")

                    with gr.Column():
                        gr.Markdown("### Case 2: Multiple Targets")
                        gr.Video(value="/home/user/app/hugging_face/assets/tutorial_multi_targets.mp4", elem_classes="video")

    with gr.Tabs():
        with gr.TabItem("Video"):
            click_state = gr.State([[],[]])

            interactive_state = gr.State({
                "inference_times": 0,
                "negative_click_times" : 0,
                "positive_click_times": 0,
                "mask_save": args.mask_save,
                "multi_mask": {
                    "mask_names": [],
                    "masks": []
                },
                "track_end_number": None,
                }
            )

            video_state = gr.State(
                {
                "user_name": "",
                "video_name": "",
                "origin_images": None,
                "painted_images": None,
                "masks": None,
                "inpaint_masks": None,
                "logits": None,
                "select_frame_number": 0,
                "fps": 30,
                "audio": "",
                }
            )

            with gr.Group(elem_classes="gr-monochrome-group", visible=True):
                with gr.Row():
                    with gr.Accordion('MatAnyone Settings (click to expand)', open=False):
                        with gr.Row():
                            erode_kernel_size = gr.Slider(label='Erode Kernel Size',
                                                    minimum=0,
                                                    maximum=30,
                                                    step=1,
                                                    value=10,
                                                    info="Erosion on the added mask",
                                                    interactive=True)
                            dilate_kernel_size = gr.Slider(label='Dilate Kernel Size',
                                                    minimum=0,
                                                    maximum=30,
                                                    step=1,
                                                    value=10,
                                                    info="Dilation on the added mask",
                                                    interactive=True)

                        with gr.Row():
                            image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Start Frame", info="Choose the start frame for target assignment and video matting", visible=False)
                            track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False)
                        with gr.Row():
                            point_prompt = gr.Radio(
                                choices=["Positive", "Negative"],
                                value="Positive",
                                label="Point Prompt",
                                info="Click to add positive or negative point for target mask",
                                interactive=True,
                                visible=False,
                                min_width=100,
                                scale=1)
                            mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask Selection", info="Choose 1~all mask(s) added in Step 2", visible=False)
            
            gr.Markdown("---")

            with gr.Column():
                # input video
                with gr.Row(equal_height=True):
                    with gr.Column(scale=2): 
                        gr.Markdown("## Step1: Upload video")
                    with gr.Column(scale=2): 
                        step2_title = gr.Markdown("## Step2: Add masks <small>(Several clicks then **`Add Mask`** <u>one by one</u>)</small>", visible=False)
                with gr.Row(equal_height=True):
                    with gr.Column(scale=2):      
                        video_input = gr.Video(label="Input Video", elem_classes="video")
                        extract_frames_button = gr.Button(value="Load Video", interactive=True, elem_classes="new_button")
                    with gr.Column(scale=2):
                        video_info = gr.Textbox(label="Video Info", visible=False)
                        template_frame = gr.Image(label="Start Frame", type="pil",interactive=True, elem_id="template_frame", visible=False, elem_classes="image")
                        with gr.Row(equal_height=True, elem_classes="mask_button_group"):
                            clear_button_click = gr.Button(value="Clear Clicks", interactive=True, visible=False, elem_classes="new_button", min_width=100)
                            add_mask_button = gr.Button(value="Add Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100)
                            remove_mask_button = gr.Button(value="Remove Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100) # no use
                            matting_button = gr.Button(value="Video Matting", interactive=True, visible=False, elem_classes="green_button", min_width=100)
                
                gr.HTML('<hr style="border: none; height: 1.5px; background: linear-gradient(to right, #a566b4, #74a781);margin: 5px 0;">')

                # output video
                with gr.Row(equal_height=True):
                    with gr.Column(scale=2):
                        foreground_video_output = gr.Video(label="Foreground Output", visible=False, elem_classes="video")
                        foreground_output_button = gr.Button(value="Foreground Output", visible=False, elem_classes="new_button")
                    with gr.Column(scale=2):
                        alpha_video_output = gr.Video(label="Alpha Output", visible=False, elem_classes="video")
                        alpha_output_button = gr.Button(value="Alpha Mask Output", visible=False, elem_classes="new_button")
                

            # first step: get the video information 
            extract_frames_button.click(
                fn=get_frames_from_video,
                inputs=[
                    video_input, video_state
                ],
                outputs=[video_state, video_info, template_frame,
                        image_selection_slider, track_pause_number_slider, point_prompt, clear_button_click, add_mask_button, matting_button, template_frame,
                        foreground_video_output, alpha_video_output, foreground_output_button, alpha_output_button, mask_dropdown, step2_title]
            )   

            # second step: select images from slider
            image_selection_slider.release(fn=select_video_template, 
                                        inputs=[image_selection_slider, video_state, interactive_state], 
                                        outputs=[template_frame, video_state, interactive_state], api_name="select_image")
            track_pause_number_slider.release(fn=get_end_number, 
                                        inputs=[track_pause_number_slider, video_state, interactive_state], 
                                        outputs=[template_frame, interactive_state], api_name="end_image")
            
            # click select image to get mask using sam
            template_frame.select(
                fn=sam_refine,
                inputs=[video_state, point_prompt, click_state, interactive_state],
                outputs=[template_frame, video_state, interactive_state]
            )

            # add different mask
            add_mask_button.click(
                fn=add_multi_mask,
                inputs=[video_state, interactive_state, mask_dropdown],
                outputs=[interactive_state, mask_dropdown, template_frame, click_state]
            )

            remove_mask_button.click(
                fn=remove_multi_mask,
                inputs=[interactive_state, mask_dropdown],
                outputs=[interactive_state, mask_dropdown]
            )

            # video matting
            matting_button.click(
                fn=video_matting,
                inputs=[video_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size],
                outputs=[foreground_video_output, alpha_video_output]
            )

            # click to get mask
            mask_dropdown.change(
                fn=show_mask,
                inputs=[video_state, interactive_state, mask_dropdown],
                outputs=[template_frame]
            )
            
            # clear input
            video_input.change(
                fn=restart,
                inputs=[],
                outputs=[ 
                    video_state,
                    interactive_state,
                    click_state,
                    foreground_video_output, alpha_video_output,
                    template_frame,
                    image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, 
                    add_mask_button, matting_button, template_frame, foreground_video_output, alpha_video_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, video_info, step2_title
                ],
                queue=False,
                show_progress=False)
            
            video_input.clear(
                fn=restart,
                inputs=[],
                outputs=[ 
                    video_state,
                    interactive_state,
                    click_state,
                    foreground_video_output, alpha_video_output,
                    template_frame,
                    image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, 
                    add_mask_button, matting_button, template_frame, foreground_video_output, alpha_video_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, video_info, step2_title
                ],
                queue=False,
                show_progress=False)
            
            # points clear
            clear_button_click.click(
                fn = clear_click,
                inputs = [video_state, click_state,],
                outputs = [template_frame,click_state],
            )

            # set example
            gr.Markdown("---")
            gr.Markdown("## Examples")
            gr.Examples(
                examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["test-sample0-720p.mp4", "test-sample1-720p.mp4", "test-sample2-720p.mp4", "test-sample3-720p.mp4"]],
                inputs=[video_input],
            )

        with gr.TabItem("Image"):
            click_state = gr.State([[],[]])

            interactive_state = gr.State({
                "inference_times": 0,
                "negative_click_times" : 0,
                "positive_click_times": 0,
                "mask_save": args.mask_save,
                "multi_mask": {
                    "mask_names": [],
                    "masks": []
                },
                "track_end_number": None,
                }
            )

            image_state = gr.State(
                {
                "user_name": "",
                "image_name": "",
                "origin_images": None,
                "painted_images": None,
                "masks": None,
                "inpaint_masks": None,
                "logits": None,
                "select_frame_number": 0,
                "fps": 30
                }
            )

            with gr.Group(elem_classes="gr-monochrome-group", visible=True):
                with gr.Row():
                    with gr.Accordion('MatAnyone Settings (click to expand)', open=False):
                        with gr.Row():
                            erode_kernel_size = gr.Slider(label='Erode Kernel Size',
                                                    minimum=0,
                                                    maximum=30,
                                                    step=1,
                                                    value=10,
                                                    info="Erosion on the added mask",
                                                    interactive=True)
                            dilate_kernel_size = gr.Slider(label='Dilate Kernel Size',
                                                    minimum=0,
                                                    maximum=30,
                                                    step=1,
                                                    value=10,
                                                    info="Dilation on the added mask",
                                                    interactive=True)
                            
                        with gr.Row():
                            image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Num of Refinement Iterations", info="More iterations β†’ More details & More time", visible=False)
                            track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False)
                        with gr.Row():
                            point_prompt = gr.Radio(
                                choices=["Positive", "Negative"],
                                value="Positive",
                                label="Point Prompt",
                                info="Click to add positive or negative point for target mask",
                                interactive=True,
                                visible=False,
                                min_width=100,
                                scale=1)
                            mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask Selection", info="Choose 1~all mask(s) added in Step 2", visible=False)
            
            gr.Markdown("---")

            with gr.Column():
                # input image
                with gr.Row(equal_height=True):
                    with gr.Column(scale=2): 
                        gr.Markdown("## Step1: Upload image")
                    with gr.Column(scale=2): 
                        step2_title = gr.Markdown("## Step2: Add masks <small>(Several clicks then **`Add Mask`** <u>one by one</u>)</small>", visible=False)
                with gr.Row(equal_height=True):
                    with gr.Column(scale=2):      
                        image_input = gr.Image(label="Input Image", elem_classes="image")
                        extract_frames_button = gr.Button(value="Load Image", interactive=True, elem_classes="new_button")
                    with gr.Column(scale=2):
                        image_info = gr.Textbox(label="Image Info", visible=False)
                        template_frame = gr.Image(type="pil", label="Start Frame", interactive=True, elem_id="template_frame", visible=False, elem_classes="image")
                        with gr.Row(equal_height=True, elem_classes="mask_button_group"):
                            clear_button_click = gr.Button(value="Clear Clicks", interactive=True, visible=False, elem_classes="new_button", min_width=100)
                            add_mask_button = gr.Button(value="Add Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100)
                            remove_mask_button = gr.Button(value="Remove Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100)
                            matting_button = gr.Button(value="Image Matting", interactive=True, visible=False, elem_classes="green_button", min_width=100)

                gr.HTML('<hr style="border: none; height: 1.5px; background: linear-gradient(to right, #a566b4, #74a781);margin: 5px 0;">')

                # output image
                with gr.Row(equal_height=True):
                    with gr.Column(scale=2):
                        foreground_image_output = gr.Image(type="pil", label="Foreground Output", visible=False, elem_classes="image")
                        foreground_output_button = gr.Button(value="Foreground Output", visible=False, elem_classes="new_button")
                    with gr.Column(scale=2):
                        alpha_image_output = gr.Image(type="pil", label="Alpha Output", visible=False, elem_classes="image")
                        alpha_output_button = gr.Button(value="Alpha Mask Output", visible=False, elem_classes="new_button")

            # first step: get the image information 
            extract_frames_button.click(
                fn=get_frames_from_image,
                inputs=[
                    image_input, image_state
                ],
                outputs=[image_state, image_info, template_frame,
                        image_selection_slider, track_pause_number_slider,point_prompt, clear_button_click, add_mask_button, matting_button, template_frame,
                        foreground_image_output, alpha_image_output, foreground_output_button, alpha_output_button, mask_dropdown, step2_title]
            )   

            # second step: select images from slider
            image_selection_slider.release(fn=select_image_template, 
                                        inputs=[image_selection_slider, image_state, interactive_state], 
                                        outputs=[template_frame, image_state, interactive_state], api_name="select_image")
            track_pause_number_slider.release(fn=get_end_number, 
                                        inputs=[track_pause_number_slider, image_state, interactive_state], 
                                        outputs=[template_frame, interactive_state], api_name="end_image")
            
            # click select image to get mask using sam
            template_frame.select(
                fn=sam_refine,
                inputs=[image_state, point_prompt, click_state, interactive_state],
                outputs=[template_frame, image_state, interactive_state]
            )

            # add different mask
            add_mask_button.click(
                fn=add_multi_mask,
                inputs=[image_state, interactive_state, mask_dropdown],
                outputs=[interactive_state, mask_dropdown, template_frame, click_state]
            )

            remove_mask_button.click(
                fn=remove_multi_mask,
                inputs=[interactive_state, mask_dropdown],
                outputs=[interactive_state, mask_dropdown]
            )

            # image matting
            matting_button.click(
                fn=image_matting,
                inputs=[image_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size, image_selection_slider],
                outputs=[foreground_image_output, alpha_image_output]
            )

            # click to get mask
            mask_dropdown.change(
                fn=show_mask,
                inputs=[image_state, interactive_state, mask_dropdown],
                outputs=[template_frame]
            )
            
            # clear input
            image_input.change(
                fn=restart,
                inputs=[],
                outputs=[ 
                    image_state,
                    interactive_state,
                    click_state,
                    foreground_image_output, alpha_image_output,
                    template_frame,
                    image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, 
                    add_mask_button, matting_button, template_frame, foreground_image_output, alpha_image_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, image_info, step2_title
                ],
                queue=False,
                show_progress=False)
            
            image_input.clear(
                fn=restart,
                inputs=[],
                outputs=[ 
                    image_state,
                    interactive_state,
                    click_state,
                    foreground_image_output, alpha_image_output,
                    template_frame,
                    image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, 
                    add_mask_button, matting_button, template_frame, foreground_image_output, alpha_image_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, image_info, step2_title
                ],
                queue=False,
                show_progress=False)
            
            # points clear
            clear_button_click.click(
                fn = clear_click,
                inputs = [image_state, click_state,],
                outputs = [template_frame,click_state],
            )

            # set example
            gr.Markdown("---")
            gr.Markdown("## Examples")
            gr.Examples(
                examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["test-sample0.jpg", "test-sample1.jpg"]],
                inputs=[image_input],
            )

    gr.Markdown(article)

demo.queue()
demo.launch(debug=True)