Spaces:
Running
on
L4
Running
on
L4
File size: 17,990 Bytes
5e2bf3b dcc8c59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
from typing import List, Optional, Iterable
import logging
from omegaconf import DictConfig
import numpy as np
import torch
import torch.nn.functional as F
from matanyone.inference.memory_manager import MemoryManager
from matanyone.inference.object_manager import ObjectManager
from matanyone.inference.image_feature_store import ImageFeatureStore
from matanyone.model.matanyone import MatAnyone
from matanyone.utils.tensor_utils import pad_divide_by, unpad, aggregate
log = logging.getLogger()
class InferenceCore:
def __init__(self,
network: MatAnyone,
cfg: DictConfig,
*,
image_feature_store: ImageFeatureStore = None):
self.network = network
self.cfg = cfg
self.mem_every = cfg.mem_every
stagger_updates = cfg.stagger_updates
self.chunk_size = cfg.chunk_size
self.save_aux = cfg.save_aux
self.max_internal_size = cfg.max_internal_size
self.flip_aug = cfg.flip_aug
self.curr_ti = -1
self.last_mem_ti = 0
# at which time indices should we update the sensory memory
if stagger_updates >= self.mem_every:
self.stagger_ti = set(range(1, self.mem_every + 1))
else:
self.stagger_ti = set(
np.round(np.linspace(1, self.mem_every, stagger_updates)).astype(int))
self.object_manager = ObjectManager()
self.memory = MemoryManager(cfg=cfg, object_manager=self.object_manager)
if image_feature_store is None:
self.image_feature_store = ImageFeatureStore(self.network)
else:
self.image_feature_store = image_feature_store
self.last_mask = None
self.last_pix_feat = None
self.last_msk_value = None
def clear_memory(self):
self.curr_ti = -1
self.last_mem_ti = 0
self.memory = MemoryManager(cfg=self.cfg, object_manager=self.object_manager)
def clear_non_permanent_memory(self):
self.curr_ti = -1
self.last_mem_ti = 0
self.memory.clear_non_permanent_memory()
def clear_sensory_memory(self):
self.curr_ti = -1
self.last_mem_ti = 0
self.memory.clear_sensory_memory()
def update_config(self, cfg):
self.mem_every = cfg['mem_every']
self.memory.update_config(cfg)
def clear_temp_mem(self):
self.memory.clear_work_mem()
# self.object_manager = ObjectManager()
self.memory.clear_obj_mem()
# self.memory.clear_sensory_memory()
def _add_memory(self,
image: torch.Tensor,
pix_feat: torch.Tensor,
prob: torch.Tensor,
key: torch.Tensor,
shrinkage: torch.Tensor,
selection: torch.Tensor,
*,
is_deep_update: bool = True,
force_permanent: bool = False) -> None:
"""
Memorize the given segmentation in all memory stores.
The batch dimension is 1 if flip augmentation is not used.
image: RGB image, (1/2)*3*H*W
pix_feat: from the key encoder, (1/2)*_*H*W
prob: (1/2)*num_objects*H*W, in [0, 1]
key/shrinkage/selection: for anisotropic l2, (1/2)*_*H*W
selection can be None if not using long-term memory
is_deep_update: whether to use deep update (e.g. with the mask encoder)
force_permanent: whether to force the memory to be permanent
"""
if prob.shape[1] == 0:
# nothing to add
log.warn('Trying to add an empty object mask to memory!')
return
if force_permanent:
as_permanent = 'all'
else:
as_permanent = 'first'
self.memory.initialize_sensory_if_needed(key, self.object_manager.all_obj_ids)
msk_value, sensory, obj_value, _ = self.network.encode_mask(
image,
pix_feat,
self.memory.get_sensory(self.object_manager.all_obj_ids),
prob,
deep_update=is_deep_update,
chunk_size=self.chunk_size,
need_weights=self.save_aux)
self.memory.add_memory(key,
shrinkage,
msk_value,
obj_value,
self.object_manager.all_obj_ids,
selection=selection,
as_permanent=as_permanent)
self.last_mem_ti = self.curr_ti
if is_deep_update:
self.memory.update_sensory(sensory, self.object_manager.all_obj_ids)
self.last_msk_value = msk_value
def _segment(self,
key: torch.Tensor,
selection: torch.Tensor,
pix_feat: torch.Tensor,
ms_features: Iterable[torch.Tensor],
update_sensory: bool = True) -> torch.Tensor:
"""
Produce a segmentation using the given features and the memory
The batch dimension is 1 if flip augmentation is not used.
key/selection: for anisotropic l2: (1/2) * _ * H * W
pix_feat: from the key encoder, (1/2) * _ * H * W
ms_features: an iterable of multiscale features from the encoder, each is (1/2)*_*H*W
with strides 16, 8, and 4 respectively
update_sensory: whether to update the sensory memory
Returns: (num_objects+1)*H*W normalized probability; the first channel is the background
"""
bs = key.shape[0]
if self.flip_aug:
assert bs == 2
else:
assert bs == 1
if not self.memory.engaged:
log.warn('Trying to segment without any memory!')
return torch.zeros((1, key.shape[-2] * 16, key.shape[-1] * 16),
device=key.device,
dtype=key.dtype)
uncert_output = None
if self.curr_ti == 0: # ONLY for the first frame for prediction
memory_readout = self.memory.read_first_frame(self.last_msk_value, pix_feat, self.last_mask, self.network, uncert_output=uncert_output)
else:
memory_readout = self.memory.read(pix_feat, key, selection, self.last_mask, self.network, uncert_output=uncert_output, last_msk_value=self.last_msk_value, ti=self.curr_ti,
last_pix_feat=self.last_pix_feat, last_pred_mask=self.last_mask)
memory_readout = self.object_manager.realize_dict(memory_readout)
sensory, _, pred_prob_with_bg = self.network.segment(ms_features,
memory_readout,
self.memory.get_sensory(
self.object_manager.all_obj_ids),
chunk_size=self.chunk_size,
update_sensory=update_sensory)
# remove batch dim
if self.flip_aug:
# average predictions of the non-flipped and flipped version
pred_prob_with_bg = (pred_prob_with_bg[0] +
torch.flip(pred_prob_with_bg[1], dims=[-1])) / 2
else:
pred_prob_with_bg = pred_prob_with_bg[0]
if update_sensory:
self.memory.update_sensory(sensory, self.object_manager.all_obj_ids)
return pred_prob_with_bg
def pred_all_flow(self, images):
self.total_len = images.shape[0]
images, self.pad = pad_divide_by(images, 16)
images = images.unsqueeze(0) # add the batch dimension: (1,t,c,h,w)
self.flows_forward, self.flows_backward = self.network.pred_forward_backward_flow(images)
def encode_all_images(self, images):
images, self.pad = pad_divide_by(images, 16)
self.image_feature_store.get_all_features(images) # t c h w
return images
def step(self,
image: torch.Tensor,
mask: Optional[torch.Tensor] = None,
objects: Optional[List[int]] = None,
*,
idx_mask: bool = False,
end: bool = False,
delete_buffer: bool = True,
force_permanent: bool = False,
matting: bool = True,
first_frame_pred: bool = False) -> torch.Tensor:
"""
Take a step with a new incoming image.
If there is an incoming mask with new objects, we will memorize them.
If there is no incoming mask, we will segment the image using the memory.
In both cases, we will update the memory and return a segmentation.
image: 3*H*W
mask: H*W (if idx mask) or len(objects)*H*W or None
objects: list of object ids that are valid in the mask Tensor.
The ids themselves do not need to be consecutive/in order, but they need to be
in the same position in the list as the corresponding mask
in the tensor in non-idx-mask mode.
objects is ignored if the mask is None.
If idx_mask is False and objects is None, we sequentially infer the object ids.
idx_mask: if True, mask is expected to contain an object id at every pixel.
If False, mask should have multiple channels with each channel representing one object.
end: if we are at the end of the sequence, we do not need to update memory
if unsure just set it to False
delete_buffer: whether to delete the image feature buffer after this step
force_permanent: the memory recorded this frame will be added to the permanent memory
"""
if objects is None and mask is not None:
assert not idx_mask
objects = list(range(1, mask.shape[0] + 1))
# resize input if needed -- currently only used for the GUI
resize_needed = False
if self.max_internal_size > 0:
h, w = image.shape[-2:]
min_side = min(h, w)
if min_side > self.max_internal_size:
resize_needed = True
new_h = int(h / min_side * self.max_internal_size)
new_w = int(w / min_side * self.max_internal_size)
image = F.interpolate(image.unsqueeze(0),
size=(new_h, new_w),
mode='bilinear',
align_corners=False)[0]
if mask is not None:
if idx_mask:
mask = F.interpolate(mask.unsqueeze(0).unsqueeze(0).float(),
size=(new_h, new_w),
mode='nearest-exact',
align_corners=False)[0, 0].round().long()
else:
mask = F.interpolate(mask.unsqueeze(0),
size=(new_h, new_w),
mode='bilinear',
align_corners=False)[0]
self.curr_ti += 1
image, self.pad = pad_divide_by(image, 16) # DONE alreay for 3DCNN!!
image = image.unsqueeze(0) # add the batch dimension
if self.flip_aug:
image = torch.cat([image, torch.flip(image, dims=[-1])], dim=0)
# whether to update the working memory
is_mem_frame = ((self.curr_ti - self.last_mem_ti >= self.mem_every) or
(mask is not None)) and (not end)
# segment when there is no input mask or when the input mask is incomplete
need_segment = (mask is None) or (self.object_manager.num_obj > 0
and not self.object_manager.has_all(objects))
update_sensory = ((self.curr_ti - self.last_mem_ti) in self.stagger_ti) and (not end)
# reinit if it is the first frame for prediction
if first_frame_pred:
self.curr_ti = 0
self.last_mem_ti = 0
is_mem_frame = True
need_segment = True
update_sensory = True
# encoding the image
ms_feat, pix_feat = self.image_feature_store.get_features(self.curr_ti, image)
key, shrinkage, selection = self.image_feature_store.get_key(self.curr_ti, image)
# segmentation from memory if needed
if need_segment:
pred_prob_with_bg = self._segment(key,
selection,
pix_feat,
ms_feat,
update_sensory=update_sensory)
# use the input mask if provided
if mask is not None:
# inform the manager of the new objects, and get a list of temporary id
# temporary ids -- indicates the position of objects in the tensor
# (starts with 1 due to the background channel)
corresponding_tmp_ids, _ = self.object_manager.add_new_objects(objects)
mask, _ = pad_divide_by(mask, 16)
if need_segment:
# merge predicted mask with the incomplete input mask
pred_prob_no_bg = pred_prob_with_bg[1:]
# use the mutual exclusivity of segmentation
if idx_mask:
pred_prob_no_bg[:, mask > 0] = 0
else:
pred_prob_no_bg[:, mask.max(0) > 0.5] = 0
new_masks = []
for mask_id, tmp_id in enumerate(corresponding_tmp_ids):
if idx_mask:
this_mask = (mask == objects[mask_id]).type_as(pred_prob_no_bg)
else:
this_mask = mask[tmp_id]
if tmp_id > pred_prob_no_bg.shape[0]:
new_masks.append(this_mask.unsqueeze(0))
else:
# +1 for padding the background channel
pred_prob_no_bg[tmp_id - 1] = this_mask
# new_masks are always in the order of tmp_id
mask = torch.cat([pred_prob_no_bg, *new_masks], dim=0)
elif idx_mask:
# simply convert cls to one-hot representation
if len(objects) == 0:
if delete_buffer:
self.image_feature_store.delete(self.curr_ti)
log.warn('Trying to insert an empty mask as memory!')
return torch.zeros((1, key.shape[-2] * 16, key.shape[-1] * 16),
device=key.device,
dtype=key.dtype)
mask = torch.stack(
[mask == objects[mask_id] for mask_id, _ in enumerate(corresponding_tmp_ids)],
dim=0)
if matting:
mask = mask.unsqueeze(0).float() / 255.
pred_prob_with_bg = torch.cat([1-mask, mask], 0)
else:
pred_prob_with_bg = aggregate(mask, dim=0)
pred_prob_with_bg = torch.softmax(pred_prob_with_bg, dim=0)
self.last_mask = pred_prob_with_bg[1:].unsqueeze(0)
if self.flip_aug:
self.last_mask = torch.cat(
[self.last_mask, torch.flip(self.last_mask, dims=[-1])], dim=0)
self.last_pix_feat = pix_feat
# save as memory if needed
if is_mem_frame or force_permanent:
# clear the memory for given mask and add the first predicted mask
if first_frame_pred:
self.clear_temp_mem()
self._add_memory(image,
pix_feat,
self.last_mask,
key,
shrinkage,
selection,
force_permanent=force_permanent,
is_deep_update=True)
else: # compute self.last_msk_value for non-memory frame
msk_value, _, _, _ = self.network.encode_mask(
image,
pix_feat,
self.memory.get_sensory(self.object_manager.all_obj_ids),
self.last_mask,
deep_update=False,
chunk_size=self.chunk_size,
need_weights=self.save_aux)
self.last_msk_value = msk_value
if delete_buffer:
self.image_feature_store.delete(self.curr_ti)
output_prob = unpad(pred_prob_with_bg, self.pad)
if resize_needed:
# restore output to the original size
output_prob = F.interpolate(output_prob.unsqueeze(0),
size=(h, w),
mode='bilinear',
align_corners=False)[0]
return output_prob
def delete_objects(self, objects: List[int]) -> None:
"""
Delete the given objects from the memory.
"""
self.object_manager.delete_objects(objects)
self.memory.purge_except(self.object_manager.all_obj_ids)
def output_prob_to_mask(self, output_prob: torch.Tensor, matting: bool = True) -> torch.Tensor:
if matting:
new_mask = output_prob[1:].squeeze(0)
else:
mask = torch.argmax(output_prob, dim=0)
# index in tensor != object id -- remap the ids here
new_mask = torch.zeros_like(mask)
for tmp_id, obj in self.object_manager.tmp_id_to_obj.items():
new_mask[mask == tmp_id] = obj.id
return new_mask
|