Spaces:
Running
on
L4
Running
on
L4
File size: 14,512 Bytes
dcc8c59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
from typing import Dict, List, Optional, Literal
from collections import defaultdict
import torch
def _add_last_dim(dictionary, key, new_value, prepend=False):
# append/prepend a new value to the last dimension of a tensor in a dictionary
# if the key does not exist, put the new value in
# append by default
if key in dictionary:
dictionary[key] = torch.cat([dictionary[key], new_value], -1)
else:
dictionary[key] = new_value
class KeyValueMemoryStore:
"""
Works for key/value pairs type storage
e.g., working and long-term memory
"""
def __init__(self, save_selection: bool = False, save_usage: bool = False):
"""
We store keys and values of objects that first appear in the same frame in a bucket.
Each bucket contains a set of object ids.
Each bucket is associated with a single key tensor
and a dictionary of value tensors indexed by object id.
The keys and values are stored as the concatenation of a permanent part and a temporary part.
"""
self.save_selection = save_selection
self.save_usage = save_usage
self.global_bucket_id = 0 # does not reduce even if buckets are removed
self.buckets: Dict[int, List[int]] = {} # indexed by bucket id
self.k: Dict[int, torch.Tensor] = {} # indexed by bucket id
self.v: Dict[int, torch.Tensor] = {} # indexed by object id
# indexed by bucket id; the end point of permanent memory
self.perm_end_pt: Dict[int, int] = defaultdict(int)
# shrinkage and selection are just like the keys
self.s = {}
if self.save_selection:
self.e = {} # does not contain the permanent memory part
# usage
if self.save_usage:
self.use_cnt = {} # indexed by bucket id, does not contain the permanent memory part
self.life_cnt = {} # indexed by bucket id, does not contain the permanent memory part
def add(self,
key: torch.Tensor,
values: Dict[int, torch.Tensor],
shrinkage: torch.Tensor,
selection: torch.Tensor,
supposed_bucket_id: int = -1,
as_permanent: Literal['no', 'first', 'all'] = 'no') -> None:
"""
key: (1/2)*C*N
values: dict of values ((1/2)*C*N), object ids are used as keys
shrinkage: (1/2)*1*N
selection: (1/2)*C*N
supposed_bucket_id: used to sync the bucket id between working and long-term memory
if provided, the input should all be in a single bucket indexed by this id
as_permanent: whether to store the input as permanent memory
'no': don't
'first': only store it as permanent memory if the bucket is empty
'all': always store it as permanent memory
"""
bs = key.shape[0]
ne = key.shape[-1]
assert len(key.shape) == 3
assert len(shrinkage.shape) == 3
assert not self.save_selection or len(selection.shape) == 3
assert as_permanent in ['no', 'first', 'all']
# add the value and create new buckets if necessary
if supposed_bucket_id >= 0:
enabled_buckets = [supposed_bucket_id]
bucket_exist = supposed_bucket_id in self.buckets
for obj, value in values.items():
if bucket_exist:
assert obj in self.v
assert obj in self.buckets[supposed_bucket_id]
_add_last_dim(self.v, obj, value, prepend=(as_permanent == 'all'))
else:
assert obj not in self.v
self.v[obj] = value
self.buckets[supposed_bucket_id] = list(values.keys())
else:
new_bucket_id = None
enabled_buckets = set()
for obj, value in values.items():
assert len(value.shape) == 3
if obj in self.v:
_add_last_dim(self.v, obj, value, prepend=(as_permanent == 'all'))
bucket_used = [
bucket_id for bucket_id, object_ids in self.buckets.items()
if obj in object_ids
]
assert len(bucket_used) == 1 # each object should only be in one bucket
enabled_buckets.add(bucket_used[0])
else:
self.v[obj] = value
if new_bucket_id is None:
# create new bucket
new_bucket_id = self.global_bucket_id
self.global_bucket_id += 1
self.buckets[new_bucket_id] = []
# put the new object into the corresponding bucket
self.buckets[new_bucket_id].append(obj)
enabled_buckets.add(new_bucket_id)
# increment the permanent size if necessary
add_as_permanent = {} # indexed by bucket id
for bucket_id in enabled_buckets:
add_as_permanent[bucket_id] = False
if as_permanent == 'all':
self.perm_end_pt[bucket_id] += ne
add_as_permanent[bucket_id] = True
elif as_permanent == 'first':
if self.perm_end_pt[bucket_id] == 0:
self.perm_end_pt[bucket_id] = ne
add_as_permanent[bucket_id] = True
# create new counters for usage if necessary
if self.save_usage and as_permanent != 'all':
new_count = torch.zeros((bs, ne), device=key.device, dtype=torch.float32)
new_life = torch.zeros((bs, ne), device=key.device, dtype=torch.float32) + 1e-7
# add the key to every bucket
for bucket_id in self.buckets:
if bucket_id not in enabled_buckets:
# if we are not adding new values to a bucket, we should skip it
continue
_add_last_dim(self.k, bucket_id, key, prepend=add_as_permanent[bucket_id])
_add_last_dim(self.s, bucket_id, shrinkage, prepend=add_as_permanent[bucket_id])
if not add_as_permanent[bucket_id]:
if self.save_selection:
_add_last_dim(self.e, bucket_id, selection)
if self.save_usage:
_add_last_dim(self.use_cnt, bucket_id, new_count)
_add_last_dim(self.life_cnt, bucket_id, new_life)
def update_bucket_usage(self, bucket_id: int, usage: torch.Tensor) -> None:
# increase all life count by 1
# increase use of indexed elements
if not self.save_usage:
return
usage = usage[:, self.perm_end_pt[bucket_id]:]
if usage.shape[-1] == 0:
# if there is no temporary memory, we don't need to update
return
self.use_cnt[bucket_id] += usage.view_as(self.use_cnt[bucket_id])
self.life_cnt[bucket_id] += 1
def sieve_by_range(self, bucket_id: int, start: int, end: int, min_size: int) -> None:
# keep only the temporary elements *outside* of this range (with some boundary conditions)
# the permanent elements are ignored in this computation
# i.e., concat (a[:start], a[end:])
# bucket with size <= min_size are not modified
assert start >= 0
assert end <= 0
object_ids = self.buckets[bucket_id]
bucket_num_elements = self.k[bucket_id].shape[-1] - self.perm_end_pt[bucket_id]
if bucket_num_elements <= min_size:
return
if end == 0:
# negative 0 would not work as the end index!
# effectively make the second part an empty slice
end = self.k[bucket_id].shape[-1] + 1
p_size = self.perm_end_pt[bucket_id]
start = start + p_size
k = self.k[bucket_id]
s = self.s[bucket_id]
if self.save_selection:
e = self.e[bucket_id]
if self.save_usage:
use_cnt = self.use_cnt[bucket_id]
life_cnt = self.life_cnt[bucket_id]
self.k[bucket_id] = torch.cat([k[:, :, :start], k[:, :, end:]], -1)
self.s[bucket_id] = torch.cat([s[:, :, :start], s[:, :, end:]], -1)
if self.save_selection:
self.e[bucket_id] = torch.cat([e[:, :, :start - p_size], e[:, :, end:]], -1)
if self.save_usage:
self.use_cnt[bucket_id] = torch.cat([use_cnt[:, :start - p_size], use_cnt[:, end:]], -1)
self.life_cnt[bucket_id] = torch.cat([life_cnt[:, :start - p_size], life_cnt[:, end:]],
-1)
for obj_id in object_ids:
v = self.v[obj_id]
self.v[obj_id] = torch.cat([v[:, :, :start], v[:, :, end:]], -1)
def remove_old_memory(self, bucket_id: int, max_len: int) -> None:
self.sieve_by_range(bucket_id, 0, -max_len, max_len)
def remove_obsolete_features(self, bucket_id: int, max_size: int) -> None:
# for long-term memory only
object_ids = self.buckets[bucket_id]
assert self.perm_end_pt[bucket_id] == 0 # permanent memory should be empty in LT memory
# normalize with life duration
usage = self.get_usage(bucket_id)
bs = usage.shape[0]
survivals = []
for bi in range(bs):
_, survived = torch.topk(usage[bi], k=max_size)
survivals.append(survived.flatten())
assert survived.shape[-1] == survivals[0].shape[-1]
self.k[bucket_id] = torch.stack(
[self.k[bucket_id][bi, :, survived] for bi, survived in enumerate(survivals)], 0)
self.s[bucket_id] = torch.stack(
[self.s[bucket_id][bi, :, survived] for bi, survived in enumerate(survivals)], 0)
if self.save_selection:
# Long-term memory does not store selection so this should not be needed
self.e[bucket_id] = torch.stack(
[self.e[bucket_id][bi, :, survived] for bi, survived in enumerate(survivals)], 0)
for obj_id in object_ids:
self.v[obj_id] = torch.stack(
[self.v[obj_id][bi, :, survived] for bi, survived in enumerate(survivals)], 0)
self.use_cnt[bucket_id] = torch.stack(
[self.use_cnt[bucket_id][bi, survived] for bi, survived in enumerate(survivals)], 0)
self.life_cnt[bucket_id] = torch.stack(
[self.life_cnt[bucket_id][bi, survived] for bi, survived in enumerate(survivals)], 0)
def get_usage(self, bucket_id: int) -> torch.Tensor:
# return normalized usage
if not self.save_usage:
raise RuntimeError('I did not count usage!')
else:
usage = self.use_cnt[bucket_id] / self.life_cnt[bucket_id]
return usage
def get_all_sliced(
self, bucket_id: int, start: int, end: int
) -> (torch.Tensor, torch.Tensor, torch.Tensor, Dict[int, torch.Tensor], torch.Tensor):
# return k, sk, ek, value, normalized usage in order, sliced by start and end
# this only queries the temporary memory
assert start >= 0
assert end <= 0
p_size = self.perm_end_pt[bucket_id]
start = start + p_size
if end == 0:
# negative 0 would not work as the end index!
k = self.k[bucket_id][:, :, start:]
sk = self.s[bucket_id][:, :, start:]
ek = self.e[bucket_id][:, :, start - p_size:] if self.save_selection else None
value = {obj_id: self.v[obj_id][:, :, start:] for obj_id in self.buckets[bucket_id]}
usage = self.get_usage(bucket_id)[:, start - p_size:] if self.save_usage else None
else:
k = self.k[bucket_id][:, :, start:end]
sk = self.s[bucket_id][:, :, start:end]
ek = self.e[bucket_id][:, :, start - p_size:end] if self.save_selection else None
value = {obj_id: self.v[obj_id][:, :, start:end] for obj_id in self.buckets[bucket_id]}
usage = self.get_usage(bucket_id)[:, start - p_size:end] if self.save_usage else None
return k, sk, ek, value, usage
def purge_except(self, obj_keep_idx: List[int]):
# purge certain objects from the memory except the one listed
obj_keep_idx = set(obj_keep_idx)
# remove objects that are not in the keep list from the buckets
buckets_to_remove = []
for bucket_id, object_ids in self.buckets.items():
self.buckets[bucket_id] = [obj_id for obj_id in object_ids if obj_id in obj_keep_idx]
if len(self.buckets[bucket_id]) == 0:
buckets_to_remove.append(bucket_id)
# remove object values that are not in the keep list
self.v = {k: v for k, v in self.v.items() if k in obj_keep_idx}
# remove buckets that are empty
for bucket_id in buckets_to_remove:
del self.buckets[bucket_id]
del self.k[bucket_id]
del self.s[bucket_id]
if self.save_selection:
del self.e[bucket_id]
if self.save_usage:
del self.use_cnt[bucket_id]
del self.life_cnt[bucket_id]
def clear_non_permanent_memory(self):
# clear all non-permanent memory
for bucket_id in self.buckets:
self.sieve_by_range(bucket_id, 0, 0, 0)
def get_v_size(self, obj_id: int) -> int:
return self.v[obj_id].shape[-1]
def size(self, bucket_id: int) -> int:
if bucket_id not in self.k:
return 0
else:
return self.k[bucket_id].shape[-1]
def perm_size(self, bucket_id: int) -> int:
return self.perm_end_pt[bucket_id]
def non_perm_size(self, bucket_id: int) -> int:
return self.size(bucket_id) - self.perm_size(bucket_id)
def engaged(self, bucket_id: Optional[int] = None) -> bool:
if bucket_id is None:
return len(self.buckets) > 0
else:
return bucket_id in self.buckets
@property
def num_objects(self) -> int:
return len(self.v)
@property
def key(self) -> Dict[int, torch.Tensor]:
return self.k
@property
def value(self) -> Dict[int, torch.Tensor]:
return self.v
@property
def shrinkage(self) -> Dict[int, torch.Tensor]:
return self.s
@property
def selection(self) -> Dict[int, torch.Tensor]:
return self.e
def __contains__(self, key):
return key in self.v
|