File size: 9,769 Bytes
dcc8c59
 
 
 
 
 
 
 
5e2bf3b
dcc8c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from typing import Dict, Optional
from omegaconf import DictConfig

import torch
import torch.nn as nn
from matanyone.model.group_modules import GConv2d
from matanyone.utils.tensor_utils import aggregate
from matanyone.model.transformer.positional_encoding import PositionalEncoding
from matanyone.model.transformer.transformer_layers import CrossAttention, SelfAttention, FFN, PixelFFN


class QueryTransformerBlock(nn.Module):
    def __init__(self, model_cfg: DictConfig):
        super().__init__()

        this_cfg = model_cfg.object_transformer
        self.embed_dim = this_cfg.embed_dim
        self.num_heads = this_cfg.num_heads
        self.num_queries = this_cfg.num_queries
        self.ff_dim = this_cfg.ff_dim

        self.read_from_pixel = CrossAttention(self.embed_dim,
                                              self.num_heads,
                                              add_pe_to_qkv=this_cfg.read_from_pixel.add_pe_to_qkv)
        self.self_attn = SelfAttention(self.embed_dim,
                                       self.num_heads,
                                       add_pe_to_qkv=this_cfg.query_self_attention.add_pe_to_qkv)
        self.ffn = FFN(self.embed_dim, self.ff_dim)
        self.read_from_query = CrossAttention(self.embed_dim,
                                              self.num_heads,
                                              add_pe_to_qkv=this_cfg.read_from_query.add_pe_to_qkv,
                                              norm=this_cfg.read_from_query.output_norm)
        self.pixel_ffn = PixelFFN(self.embed_dim)

    def forward(
            self,
            x: torch.Tensor,
            pixel: torch.Tensor,
            query_pe: torch.Tensor,
            pixel_pe: torch.Tensor,
            attn_mask: torch.Tensor,
            need_weights: bool = False) -> (torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor):
        # x: (bs*num_objects)*num_queries*embed_dim
        # pixel: bs*num_objects*C*H*W
        # query_pe: (bs*num_objects)*num_queries*embed_dim
        # pixel_pe: (bs*num_objects)*(H*W)*C
        # attn_mask: (bs*num_objects*num_heads)*num_queries*(H*W)

        # bs*num_objects*C*H*W -> (bs*num_objects)*(H*W)*C
        pixel_flat = pixel.flatten(3, 4).flatten(0, 1).transpose(1, 2).contiguous()
        x, q_weights = self.read_from_pixel(x,
                                            pixel_flat,
                                            query_pe,
                                            pixel_pe,
                                            attn_mask=attn_mask,
                                            need_weights=need_weights)
        x = self.self_attn(x, query_pe)
        x = self.ffn(x)

        pixel_flat, p_weights = self.read_from_query(pixel_flat,
                                                     x,
                                                     pixel_pe,
                                                     query_pe,
                                                     need_weights=need_weights)
        pixel = self.pixel_ffn(pixel, pixel_flat)

        if need_weights:
            bs, num_objects, _, h, w = pixel.shape
            q_weights = q_weights.view(bs, num_objects, self.num_heads, self.num_queries, h, w)
            p_weights = p_weights.transpose(2, 3).view(bs, num_objects, self.num_heads,
                                                       self.num_queries, h, w)

        return x, pixel, q_weights, p_weights


class QueryTransformer(nn.Module):
    def __init__(self, model_cfg: DictConfig):
        super().__init__()

        this_cfg = model_cfg.object_transformer
        self.value_dim = model_cfg.value_dim
        self.embed_dim = this_cfg.embed_dim
        self.num_heads = this_cfg.num_heads
        self.num_queries = this_cfg.num_queries

        # query initialization and embedding
        self.query_init = nn.Embedding(self.num_queries, self.embed_dim)
        self.query_emb = nn.Embedding(self.num_queries, self.embed_dim)

        # projection from object summaries to query initialization and embedding
        self.summary_to_query_init = nn.Linear(self.embed_dim, self.embed_dim)
        self.summary_to_query_emb = nn.Linear(self.embed_dim, self.embed_dim)

        self.pixel_pe_scale = model_cfg.pixel_pe_scale
        self.pixel_pe_temperature = model_cfg.pixel_pe_temperature
        self.pixel_init_proj = GConv2d(self.embed_dim, self.embed_dim, kernel_size=1)
        self.pixel_emb_proj = GConv2d(self.embed_dim, self.embed_dim, kernel_size=1)
        self.spatial_pe = PositionalEncoding(self.embed_dim,
                                             scale=self.pixel_pe_scale,
                                             temperature=self.pixel_pe_temperature,
                                             channel_last=False,
                                             transpose_output=True)

        # transformer blocks
        self.num_blocks = this_cfg.num_blocks
        self.blocks = nn.ModuleList(
            QueryTransformerBlock(model_cfg) for _ in range(self.num_blocks))
        self.mask_pred = nn.ModuleList(
            nn.Sequential(nn.ReLU(), GConv2d(self.embed_dim, 1, kernel_size=1))
            for _ in range(self.num_blocks + 1))

        self.act = nn.ReLU(inplace=True)

    def forward(self,
                pixel: torch.Tensor,
                obj_summaries: torch.Tensor,
                selector: Optional[torch.Tensor] = None,
                need_weights: bool = False,
                seg_pass=False) -> (torch.Tensor, Dict[str, torch.Tensor]):
        # pixel: B*num_objects*embed_dim*H*W
        # obj_summaries: B*num_objects*T*num_queries*embed_dim
        T = obj_summaries.shape[2]
        bs, num_objects, _, H, W = pixel.shape

        # normalize object values
        # the last channel is the cumulative area of the object
        obj_summaries = obj_summaries.view(bs * num_objects, T, self.num_queries,
                                           self.embed_dim + 1)
        # sum over time
        # during inference, T=1 as we already did streaming average in memory_manager
        obj_sums = obj_summaries[:, :, :, :-1].sum(dim=1)
        obj_area = obj_summaries[:, :, :, -1:].sum(dim=1)
        obj_values = obj_sums / (obj_area + 1e-4)
        obj_init = self.summary_to_query_init(obj_values)
        obj_emb = self.summary_to_query_emb(obj_values)

        # positional embeddings for object queries
        query = self.query_init.weight.unsqueeze(0).expand(bs * num_objects, -1, -1) + obj_init
        query_emb = self.query_emb.weight.unsqueeze(0).expand(bs * num_objects, -1, -1) + obj_emb

        # positional embeddings for pixel features
        pixel_init = self.pixel_init_proj(pixel)
        pixel_emb = self.pixel_emb_proj(pixel)
        pixel_pe = self.spatial_pe(pixel.flatten(0, 1))
        pixel_emb = pixel_emb.flatten(3, 4).flatten(0, 1).transpose(1, 2).contiguous()
        pixel_pe = pixel_pe.flatten(1, 2) + pixel_emb

        pixel = pixel_init

        # run the transformer
        aux_features = {'logits': []}

        # first aux output
        aux_logits = self.mask_pred[0](pixel).squeeze(2)
        attn_mask = self._get_aux_mask(aux_logits, selector, seg_pass=seg_pass)
        aux_features['logits'].append(aux_logits)
        for i in range(self.num_blocks):
            query, pixel, q_weights, p_weights = self.blocks[i](query,
                                                                pixel,
                                                                query_emb,
                                                                pixel_pe,
                                                                attn_mask,
                                                                need_weights=need_weights)

            if self.training or i <= self.num_blocks - 1 or need_weights:
                aux_logits = self.mask_pred[i + 1](pixel).squeeze(2)
                attn_mask = self._get_aux_mask(aux_logits, selector, seg_pass=seg_pass)
                aux_features['logits'].append(aux_logits)

        aux_features['q_weights'] = q_weights  # last layer only
        aux_features['p_weights'] = p_weights  # last layer only

        if self.training:
            # no need to save all heads
            aux_features['attn_mask'] = attn_mask.view(bs, num_objects, self.num_heads,
                                                       self.num_queries, H, W)[:, :, 0]

        return pixel, aux_features

    def _get_aux_mask(self, logits: torch.Tensor, selector: torch.Tensor, seg_pass=False) -> torch.Tensor:
        # logits: batch_size*num_objects*H*W
        # selector: batch_size*num_objects*1*1
        # returns a mask of shape (batch_size*num_objects*num_heads)*num_queries*(H*W)
        # where True means the attention is blocked

        if selector is None:
            prob = logits.sigmoid()
        else:
            prob = logits.sigmoid() * selector
        logits = aggregate(prob, dim=1)

        is_foreground = (logits[:, 1:] >= logits.max(dim=1, keepdim=True)[0])
        foreground_mask = is_foreground.bool().flatten(start_dim=2)
        inv_foreground_mask = ~foreground_mask
        inv_background_mask = foreground_mask

        aux_foreground_mask = inv_foreground_mask.unsqueeze(2).unsqueeze(2).repeat(
            1, 1, self.num_heads, self.num_queries // 2, 1).flatten(start_dim=0, end_dim=2)
        aux_background_mask = inv_background_mask.unsqueeze(2).unsqueeze(2).repeat(
            1, 1, self.num_heads, self.num_queries // 2, 1).flatten(start_dim=0, end_dim=2)

        aux_mask = torch.cat([aux_foreground_mask, aux_background_mask], dim=1)

        aux_mask[torch.where(aux_mask.sum(-1) == aux_mask.shape[-1])] = False

        return aux_mask