Spaces:
Running
on
L4
Running
on
L4
from typing import Optional | |
from omegaconf import DictConfig | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from matanyone.model.transformer.positional_encoding import PositionalEncoding | |
# @torch.jit.script | |
def _weighted_pooling(masks: torch.Tensor, value: torch.Tensor, | |
logits: torch.Tensor) -> (torch.Tensor, torch.Tensor): | |
# value: B*num_objects*H*W*value_dim | |
# logits: B*num_objects*H*W*num_summaries | |
# masks: B*num_objects*H*W*num_summaries: 1 if allowed | |
weights = logits.sigmoid() * masks | |
# B*num_objects*num_summaries*value_dim | |
sums = torch.einsum('bkhwq,bkhwc->bkqc', weights, value) | |
# B*num_objects*H*W*num_summaries -> B*num_objects*num_summaries*1 | |
area = weights.flatten(start_dim=2, end_dim=3).sum(2).unsqueeze(-1) | |
# B*num_objects*num_summaries*value_dim | |
return sums, area | |
class ObjectSummarizer(nn.Module): | |
def __init__(self, model_cfg: DictConfig): | |
super().__init__() | |
this_cfg = model_cfg.object_summarizer | |
self.value_dim = model_cfg.value_dim | |
self.embed_dim = this_cfg.embed_dim | |
self.num_summaries = this_cfg.num_summaries | |
self.add_pe = this_cfg.add_pe | |
self.pixel_pe_scale = model_cfg.pixel_pe_scale | |
self.pixel_pe_temperature = model_cfg.pixel_pe_temperature | |
if self.add_pe: | |
self.pos_enc = PositionalEncoding(self.embed_dim, | |
scale=self.pixel_pe_scale, | |
temperature=self.pixel_pe_temperature) | |
self.input_proj = nn.Linear(self.value_dim, self.embed_dim) | |
self.feature_pred = nn.Sequential( | |
nn.Linear(self.embed_dim, self.embed_dim), | |
nn.ReLU(inplace=True), | |
nn.Linear(self.embed_dim, self.embed_dim), | |
) | |
self.weights_pred = nn.Sequential( | |
nn.Linear(self.embed_dim, self.embed_dim), | |
nn.ReLU(inplace=True), | |
nn.Linear(self.embed_dim, self.num_summaries), | |
) | |
def forward(self, | |
masks: torch.Tensor, | |
value: torch.Tensor, | |
need_weights: bool = False) -> (torch.Tensor, Optional[torch.Tensor]): | |
# masks: B*num_objects*(H0)*(W0) | |
# value: B*num_objects*value_dim*H*W | |
# -> B*num_objects*H*W*value_dim | |
h, w = value.shape[-2:] | |
masks = F.interpolate(masks, size=(h, w), mode='area') | |
masks = masks.unsqueeze(-1) | |
inv_masks = 1 - masks | |
repeated_masks = torch.cat([ | |
masks.expand(-1, -1, -1, -1, self.num_summaries // 2), | |
inv_masks.expand(-1, -1, -1, -1, self.num_summaries // 2), | |
], | |
dim=-1) | |
value = value.permute(0, 1, 3, 4, 2) | |
value = self.input_proj(value) | |
if self.add_pe: | |
pe = self.pos_enc(value) | |
value = value + pe | |
with torch.cuda.amp.autocast(enabled=False): | |
value = value.float() | |
feature = self.feature_pred(value) | |
logits = self.weights_pred(value) | |
sums, area = _weighted_pooling(repeated_masks, feature, logits) | |
summaries = torch.cat([sums, area], dim=-1) | |
if need_weights: | |
return summaries, logits | |
else: | |
return summaries, None |