Penality commited on
Commit
cf10f44
·
verified ·
1 Parent(s): 2967dc8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -51
app.py CHANGED
@@ -1,64 +1,68 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
41
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import pdfplumber
3
+ import openai
4
+ import os
5
 
6
+ # Set up OpenAI API Key (Replace with your actual key)
7
+ openai.api_key = "YOUR_OPENAI_API_KEY"
 
 
8
 
9
 
10
+ def clean_text(text):
11
+ """Cleans extracted text for better processing by the model."""
12
+ text = unicodedata.normalize("NFKC", text) # Normalize Unicode characters
13
+ text = re.sub(r'\s+', ' ', text).strip() # Remove extra spaces and newlines
14
+ text = re.sub(r'[^a-zA-Z0-9.,!?;:\'\"()\-]', ' ', text) # Keep basic punctuation
15
+ text = re.sub(r'(?i)(page\s*\d+)', '', text) # Remove page numbers
16
+ return text
 
 
17
 
18
+ def extract_text_from_pdf(pdf_file):
19
+ """Extract and clean text from the uploaded PDF."""
20
+ try:
21
+ with pdfplumber.open(pdf_file) as pdf:
22
+ text = " ".join(clean_text(text) for page in pdf.pages if (text := page.extract_text()))
23
+ return text
24
+ except Exception as e:
25
+ print(f"Error extracting text: {e}")
26
+ return None
27
 
28
+ def split_text(text, chunk_size=500):
29
+ """Splits text into smaller chunks for faster processing."""
30
+ chunks = []
31
+ for i in range(0, len(text), chunk_size):
32
+ chunks.append(text[i:i+chunk_size])
33
+ return chunks
34
 
35
+ def chatbot(pdf_file, user_question):
36
+ """Processes the PDF and answers the user's question."""
37
+
38
+ # Step 1: Extract text from the PDF
39
+ text = extract_text_from_pdf(pdf_file)
40
+
41
+ # Step 2: Split into chunks
42
+ chunks = split_text(text)
43
+
44
+ # Step 3: Use only the first chunk for now (to reduce token usage)
45
+ if not chunks:
46
+ return "Could not extract any text from the PDF."
47
 
48
+ prompt = f"Based on this document, answer the question:\n\nDocument:\n{chunks[0]}\n\nQuestion: {user_question}"
 
 
 
 
 
 
 
49
 
50
+ # Step 4: Send to OpenAI's GPT-3.5
51
+ response = openai.ChatCompletion.create(
52
+ model="gpt-3.5-turbo",
53
+ messages=[{"role": "user", "content": prompt}]
54
+ )
55
 
56
+ # Step 5: Return the chatbot's response
57
+ return response["choices"][0]["message"]["content"]
58
 
59
+ # Gradio Interface
60
+ iface = gr.Interface(
61
+ fn=chatbot,
62
+ inputs=[gr.File(label="Upload PDF"), gr.Textbox(label="Ask a Question")],
63
+ outputs=gr.Textbox(label="Answer"),
64
+ title="PDF Q&A Chatbot"
 
 
 
 
 
 
 
 
 
 
 
65
  )
66
 
67
+ # Launch Gradio app
68
+ iface.launch()