Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,68 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import pdfplumber
|
3 |
+
import openai
|
4 |
+
import os
|
5 |
|
6 |
+
# Set up OpenAI API Key (Replace with your actual key)
|
7 |
+
openai.api_key = "YOUR_OPENAI_API_KEY"
|
|
|
|
|
8 |
|
9 |
|
10 |
+
def clean_text(text):
|
11 |
+
"""Cleans extracted text for better processing by the model."""
|
12 |
+
text = unicodedata.normalize("NFKC", text) # Normalize Unicode characters
|
13 |
+
text = re.sub(r'\s+', ' ', text).strip() # Remove extra spaces and newlines
|
14 |
+
text = re.sub(r'[^a-zA-Z0-9.,!?;:\'\"()\-]', ' ', text) # Keep basic punctuation
|
15 |
+
text = re.sub(r'(?i)(page\s*\d+)', '', text) # Remove page numbers
|
16 |
+
return text
|
|
|
|
|
17 |
|
18 |
+
def extract_text_from_pdf(pdf_file):
|
19 |
+
"""Extract and clean text from the uploaded PDF."""
|
20 |
+
try:
|
21 |
+
with pdfplumber.open(pdf_file) as pdf:
|
22 |
+
text = " ".join(clean_text(text) for page in pdf.pages if (text := page.extract_text()))
|
23 |
+
return text
|
24 |
+
except Exception as e:
|
25 |
+
print(f"Error extracting text: {e}")
|
26 |
+
return None
|
27 |
|
28 |
+
def split_text(text, chunk_size=500):
|
29 |
+
"""Splits text into smaller chunks for faster processing."""
|
30 |
+
chunks = []
|
31 |
+
for i in range(0, len(text), chunk_size):
|
32 |
+
chunks.append(text[i:i+chunk_size])
|
33 |
+
return chunks
|
34 |
|
35 |
+
def chatbot(pdf_file, user_question):
|
36 |
+
"""Processes the PDF and answers the user's question."""
|
37 |
+
|
38 |
+
# Step 1: Extract text from the PDF
|
39 |
+
text = extract_text_from_pdf(pdf_file)
|
40 |
+
|
41 |
+
# Step 2: Split into chunks
|
42 |
+
chunks = split_text(text)
|
43 |
+
|
44 |
+
# Step 3: Use only the first chunk for now (to reduce token usage)
|
45 |
+
if not chunks:
|
46 |
+
return "Could not extract any text from the PDF."
|
47 |
|
48 |
+
prompt = f"Based on this document, answer the question:\n\nDocument:\n{chunks[0]}\n\nQuestion: {user_question}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# Step 4: Send to OpenAI's GPT-3.5
|
51 |
+
response = openai.ChatCompletion.create(
|
52 |
+
model="gpt-3.5-turbo",
|
53 |
+
messages=[{"role": "user", "content": prompt}]
|
54 |
+
)
|
55 |
|
56 |
+
# Step 5: Return the chatbot's response
|
57 |
+
return response["choices"][0]["message"]["content"]
|
58 |
|
59 |
+
# Gradio Interface
|
60 |
+
iface = gr.Interface(
|
61 |
+
fn=chatbot,
|
62 |
+
inputs=[gr.File(label="Upload PDF"), gr.Textbox(label="Ask a Question")],
|
63 |
+
outputs=gr.Textbox(label="Answer"),
|
64 |
+
title="PDF Q&A Chatbot"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
)
|
66 |
|
67 |
+
# Launch Gradio app
|
68 |
+
iface.launch()
|
|