File size: 11,759 Bytes
a4c7002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import sqlite3
import os
import pytesseract
from PIL import Image
from pdf2image import convert_from_path
from groq import Groq
import json
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# --- Configuration ---
DATABASE = "medidoc.db"
UPLOAD_FOLDER = "uploads"
os.makedirs(UPLOAD_FOLDER, exist_ok=True)

# --- Groq Client Initialization ---
# Use environment variable for API key
GROQ_API_KEY = os.getenv("GROQ_API_KEY", "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")
client = Groq(api_key=GROQ_API_KEY)

# --- Database Setup ---
def init_db():
    try:
        conn = sqlite3.connect(DATABASE)
        cursor = conn.cursor()
        cursor.execute("""

        CREATE TABLE IF NOT EXISTS documents (

            id INTEGER PRIMARY KEY AUTOINCREMENT,

            filename TEXT NOT NULL,

            category TEXT,

            document_date TEXT,

            doctor_name TEXT,

            hospital_name TEXT,

            summary TEXT,

            content TEXT

        )

        """)
        conn.commit()
        conn.close()
        logger.info("Database initialized successfully")
    except Exception as e:
        logger.error(f"Database initialization failed: {e}")

init_db()

# --- FastAPI App ---
app = FastAPI(title="MediDoc API", version="1.0.0")

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # In production, specify exact origins
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# --- Helper Functions ---
def extract_text_from_file(filepath: str) -> str:
    """Extract text from PDF or image files"""
    try:
        if not os.path.exists(filepath):
            logger.error(f"File not found: {filepath}")
            return ""
            
        if filepath.lower().endswith(".pdf"):
            pages = convert_from_path(filepath)
            text = ""
            for page in pages:
                text += pytesseract.image_to_string(page) + "\n"
            return text.strip()
        else:
            # Handle image files
            with Image.open(filepath) as img:
                text = pytesseract.image_to_string(img)
            return text.strip()
            
    except Exception as e:
        logger.error(f"Error extracting text from {filepath}: {e}")
        return ""

def process_with_llm(text: str) -> dict:
    """Analyze medical text using Groq's Llama model"""
    if not text.strip():
        return {
            "category": "Empty Document",
            "document_date": "N/A",
            "doctor_name": "N/A",
            "hospital_name": "N/A",
            "summary": "Document appears to be empty or text could not be extracted.",
        }
    
    system_prompt = """

    You are an expert medical data extraction assistant. Analyze the provided text from a medical document and extract key information.

    Respond ONLY with a valid JSON object containing exactly these keys:

    - "category": Choose from "Prescription", "Lab Report", "Medical Bill", "Pharmacy Bill", "Discharge Summary", "Consultation Notes", "Other"

    - "document_date": Date in YYYY-MM-DD format. If not found, use "N/A"

    - "doctor_name": Full name of the doctor. If not found, use "N/A"

    - "hospital_name": Name of hospital/clinic. If not found, use "N/A"

    - "summary": A brief, clear summary in 1-2 sentences describing what this document is about



    Return only the JSON object, no other text.

    """
    
    fallback_response = {
        "category": "Other",
        "document_date": "N/A",
        "doctor_name": "N/A",
        "hospital_name": "N/A",
        "summary": "Medical document processed but specific information could not be extracted.",
    }

    try:
        completion = client.chat.completions.create(
            model="llama-3.1-8b-instant",
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": f"Medical document text:\n\n{text[:2000]}"}  # Limit text length
            ],
            temperature=0.1,
            max_tokens=300,
            top_p=1,
            stream=False,
        )
        
        response_content = completion.choices[0].message.content.strip()
        
        # Clean up the response
        if response_content.startswith("```json"):
            response_content = response_content[7:]
        if response_content.endswith("```"):
            response_content = response_content[:-3]
        response_content = response_content.strip()
        
        parsed_response = json.loads(response_content)
        
        # Validate required keys
        required_keys = ["category", "document_date", "doctor_name", "hospital_name", "summary"]
        for key in required_keys:
            if key not in parsed_response:
                parsed_response[key] = "N/A"
        
        return parsed_response

    except json.JSONDecodeError as e:
        logger.error(f"JSON Parsing Error: {e}\nRaw Response: {response_content}")
        return fallback_response
    except Exception as e:
        logger.error(f"Error with Groq API: {e}")
        return fallback_response

# --- API Endpoints ---
@app.get("/")
async def root():
    return {"message": "MediDoc API is running"}

@app.post("/upload/")
async def upload_document(file: UploadFile = File(...)):
    """Upload and process a medical document"""
    try:
        # Validate file type
        allowed_types = ['application/pdf', 'image/jpeg', 'image/jpg', 'image/png']
        if file.content_type not in allowed_types:
            raise HTTPException(status_code=400, detail="Only PDF and image files are allowed")
        
        # Save uploaded file
        filepath = os.path.join(UPLOAD_FOLDER, file.filename)
        with open(filepath, "wb") as buffer:
            content = await file.read()
            if not content:
                raise HTTPException(status_code=400, detail="Uploaded file is empty")
            buffer.write(content)
        
        logger.info(f"File saved: {filepath}")
        
        # Extract text
        text = extract_text_from_file(filepath)
        if not text.strip():
            # Clean up the file
            os.remove(filepath)
            raise HTTPException(status_code=400, detail="Could not extract text from the uploaded file")

        # Process with LLM
        processed_data = process_with_llm(text)
        
        # Save to database
        conn = sqlite3.connect(DATABASE)
        cursor = conn.cursor()
        cursor.execute(
            """INSERT INTO documents 

               (filename, category, document_date, doctor_name, hospital_name, summary, content) 

               VALUES (?, ?, ?, ?, ?, ?, ?)""",
            (
                file.filename,
                processed_data.get("category", "N/A"),
                processed_data.get("document_date", "N/A"),
                processed_data.get("doctor_name", "N/A"),
                processed_data.get("hospital_name", "N/A"),
                processed_data.get("summary", "N/A"),
                text
            ),
        )
        conn.commit()
        conn.close()
        
        logger.info(f"Document processed successfully: {file.filename}")
        return {"filename": file.filename, "info": processed_data, "status": "success"}
        
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Unexpected error processing file: {e}")
        raise HTTPException(status_code=500, detail="Internal server error occurred while processing the file")

@app.get("/documents/")
def get_documents():
    """Retrieve all processed documents"""
    try:
        conn = sqlite3.connect(DATABASE)
        conn.row_factory = sqlite3.Row
        cursor = conn.cursor()
        cursor.execute("""

            SELECT id, filename, category, document_date, doctor_name, hospital_name, summary 

            FROM documents 

            ORDER BY 

                CASE WHEN document_date = 'N/A' THEN 1 ELSE 0 END,

                document_date DESC

        """)
        documents = [dict(row) for row in cursor.fetchall()]
        conn.close()
        return {"documents": documents, "count": len(documents)}
    except Exception as e:
        logger.error(f"Error retrieving documents: {e}")
        raise HTTPException(status_code=500, detail="Could not retrieve documents")

class SearchResult(BaseModel):
    answer: str
    sources: list

@app.get("/search/", response_model=SearchResult)
def search_medical_history(query: str):
    """Search through medical documents using natural language"""
    if not query.strip():
        raise HTTPException(status_code=400, detail="Search query cannot be empty")
    
    try:
        conn = sqlite3.connect(DATABASE)
        cursor = conn.cursor()
        cursor.execute("SELECT filename, content, summary, category FROM documents")
        all_docs = cursor.fetchall()
        conn.close()

        if not all_docs:
            return {"answer": "No documents have been uploaded yet. Please upload some medical documents first.", "sources": []}

        # Prepare context for the AI
        context_parts = []
        for i, doc in enumerate(all_docs):
            filename, content, summary, category = doc
            context_parts.append(f"Document {i+1}: {filename}\nCategory: {category}\nSummary: {summary}\nContent: {content[:1500]}")
        
        context = "\n\n---\n\n".join(context_parts)
        
        system_prompt = f"""

        You are a medical assistant helping a patient understand their medical history. 

        Answer the user's question based ONLY on the provided medical documents.

        

        Guidelines:

        - Provide a clear, helpful answer

        - Mention specific document names when referencing information

        - If information is not available in the documents, say so clearly

        - Be concise but informative

        - Use medical terminology appropriately but explain complex terms

        

        Available Documents:

        {context}

        """

        completion = client.chat.completions.create(
            model="llama-3.1-8b-instant",
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": query}
            ],
            temperature=0.2,
            max_tokens=800,
        )
        
        answer = completion.choices[0].message.content
        
        # Find relevant sources mentioned in the answer
        sources = []
        for doc in all_docs:
            filename = doc[0]
            if filename.lower() in answer.lower():
                sources.append({
                    "filename": filename,
                    "summary": doc[2],
                    "category": doc[3]
                })
        
        return {"answer": answer, "sources": sources}
        
    except Exception as e:
        logger.error(f"Error during search: {e}")
        raise HTTPException(status_code=500, detail="Search service is currently unavailable")

@app.get("/health")
def health_check():
    """Health check endpoint"""
    return {"status": "healthy", "database": "connected"}

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)