Spaces:
Runtime error
Runtime error
import gradio as gr | |
import transformers | |
import torch | |
from transformers import BertModel, BertTokenizer, AdamW, get_linear_schedule_with_warmup | |
from torch import nn, optim | |
from torch.utils.data import Dataset, DataLoader | |
import pickle | |
class_names = ['left', 'neutral', 'right'] | |
PRE_TRAINED_MODEL_NAME = 'bert-base-uncased' | |
tokenizer = BertTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME) | |
MAX_LEN = 256 | |
bert_model = BertModel.from_pretrained(PRE_TRAINED_MODEL_NAME) | |
class SentimentClassifier(nn.Module): | |
def __init__(self, n_classes): | |
super(SentimentClassifier, self).__init__() | |
self.bert = BertModel.from_pretrained(PRE_TRAINED_MODEL_NAME) | |
self.drop = nn.Dropout(p=0.4) | |
self.out = nn.Linear(self.bert.config.hidden_size, n_classes) | |
def forward(self, input_ids, attention_mask): | |
_, pooled_output = self.bert( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
return_dict=False | |
) | |
output = self.drop(pooled_output) | |
return self.out(output) | |
model = SentimentClassifier(len(class_names)) | |
model2 = torch.load("model_BERT_2", map_location=torch.device('cpu')) | |
def result_final(new_article): | |
encoded_review = tokenizer.encode_plus( | |
review_text, | |
max_length=MAX_LEN, | |
add_special_tokens=True, | |
return_token_type_ids=False, | |
padding="max_length", | |
truncation=True, | |
return_attention_mask=True, | |
return_tensors='pt', | |
) | |
input_ids = encoded_review['input_ids'].to(device) | |
attention_mask = encoded_review['attention_mask'].to(device) | |
output = model2(input_ids, attention_mask) | |
_, prediction = torch.max(output, dim=1) | |
return class_names[prediction] | |
iface = gr.Interface(fn = result_final, inputs = "text", outputs = ["text"], title = "News Bias Classifer") | |
iface.launch() | |