|
from openai import OpenAI |
|
from concurrent.futures import ThreadPoolExecutor |
|
import json |
|
import copy |
|
from tqdm import tqdm |
|
import queue |
|
import time |
|
|
|
base_id_prompt = "# Role: 问答机器人\n\n## Profile\n- author: 尖米\n- version: 1.0\n- language: 中文\n- description: 你是机智流的问答机器人,你可以对用户输入的图像、文字进行解析,并根据已有的知识库进行精确回答。\n\n## Skills\n1. 图像识别与解析:能够识别用户上传的图像,并提取其中的关键信息。\n2. 自然语言处理:能够理解并解析用户输入的文字信息,准确把握用户意图。\n3. 知识库应用:根据解析结果,查询知识库,提供准确、相关的答案。\n4. 多轮对话:支持与用户进行多轮对话,提供连续性、上下文相关的回答。\n\n## Rules\n1. 必须充分理解用户输入的图像和文字内容。\n2. 回答需要简洁明了,避免过于复杂或含糊的表述。\n3. 在回答过程中,优先查询和引用公司已有的知识库。\n4. 对于无法回答的问题,需要引导用户提供更多信息或寻求人工客服帮助。\n\n## Workflows\n1. 接收并分析用户输入的图像或文字信息。\n2. 基于图像识别或自然语言处理技术,提取关键信息。\n3. 查询知识库,匹配相关信息。\n4. 向用户提供精准、相关的回答。\n5. 如有必要,进行多轮对话,确保问题得到有效解决。\n\n## Init\n欢迎使用机智流的问答机器人,请输入您的问题,我将尽力为您提供帮助。\n", |
|
|
|
|
|
clients = { |
|
"internlm": OpenAI( |
|
api_key="your_internlm_api_key", |
|
base_url="https://internlm-chat.intern-ai.org.cn/puyu/api/v1/", |
|
), |
|
"glm": OpenAI( |
|
api_key="your_glm_api_key", |
|
base_url="your_glm_url", |
|
), |
|
"deepseek": OpenAI( |
|
api_key="your_deepseek_api_key", |
|
base_url="your_deepseek_url", |
|
) |
|
} |
|
|
|
class BaseDataAPI: |
|
def __init__(self, questions_path, save_path, repeat=0, client_name="internlm"): |
|
self.client = clients[client_name] |
|
self.questions_path = questions_path |
|
self.save_path = save_path |
|
self.repeat = repeat |
|
self.data_template = { |
|
"conversation": [ |
|
{ |
|
"system": base_id_prompt |
|
"input": "xxx", |
|
"output": "xxx" |
|
} |
|
] |
|
} |
|
|
|
def get_answer(self, question): |
|
chat_rsp = self.client.chat.completions.create( |
|
model="internlm2.5-latest", |
|
messages=[ |
|
{"role": "system", "content": base_id_prompt}, |
|
{"role": "user", "content": question} |
|
], |
|
stream=False, |
|
) |
|
return self.build_data(question, chat_rsp) |
|
|
|
def build_data(self, question, chat_rsp): |
|
temp = copy.deepcopy(self.data_template) |
|
temp['conversation'][0]['input'] = question |
|
temp['conversation'][0]['output'] = chat_rsp.choices[0].message.content |
|
return temp |
|
|
|
def save(self, train_data): |
|
with open(self.save_path, 'a', encoding='utf-8') as f: |
|
for item in train_data: |
|
json.dump(item, f, ensure_ascii=False) |
|
f.write("\n") |
|
|
|
@staticmethod |
|
def load_txt(path): |
|
with open(path, 'r', encoding='utf-8') as f: |
|
return f.read() |
|
|
|
def read_questions(self): |
|
prompt = self.load_txt(self.questions_path) |
|
promptlist = prompt.split('\n') |
|
if self.repeat != 0: |
|
promptlist = promptlist * self.repeat |
|
print(f"Total questions: {len(promptlist)}") |
|
return promptlist |
|
|
|
class GetDataApi(BaseDataAPI): |
|
def run(self): |
|
answer_queue = queue.Queue() |
|
promptlist = self.read_questions() |
|
with ThreadPoolExecutor(max_workers=10) as pool: |
|
print("Asking...") |
|
futures = [pool.submit(self.get_answer, question) for question in promptlist] |
|
for future in tqdm(futures): |
|
result = future.result() |
|
answer_queue.put(result) |
|
if answer_queue.qsize() >= 10: |
|
self.save([answer_queue.get() for _ in range(10)]) |
|
|
|
|
|
remaining = [] |
|
while not answer_queue.empty(): |
|
remaining.append(answer_queue.get()) |
|
if remaining: |
|
self.save(remaining) |
|
|
|
class ChatData(BaseDataAPI): |
|
def __init__(self, train_data, save_path, client_name="internlm"): |
|
super().__init__(train_data, save_path, client_name=client_name) |
|
self.train_data = train_data |
|
|
|
def load_data(self): |
|
with open(self.train_data, 'r', encoding='utf-8') as f: |
|
return f.readlines() |
|
|
|
def ask_for_tts(self, question, save_ask): |
|
chat_rsp = self.client.chat.completions.create( |
|
model="internlm2.5-latest", |
|
messages=[ |
|
{"role": "system", "content": base_id_prompt}, |
|
{"role": "user", "content": question} |
|
], |
|
stream=False, |
|
) |
|
return self.build_data(save_ask, chat_rsp) |
|
|
|
def __call__(self): |
|
train_data = self.load_data() |
|
answer_queue = queue.Queue() |
|
with ThreadPoolExecutor(max_workers=10) as pool: |
|
print("Asking...") |
|
futures = [] |
|
for item in train_data: |
|
item = json.loads(item) |
|
question = item['conversation'][0]['output'] |
|
save_ask = item['conversation'][0]['input'] |
|
futures.append(pool.submit(self.ask_for_tts, question, save_ask)) |
|
|
|
for future in tqdm(futures): |
|
result = future.result() |
|
answer_queue.put(result) |
|
if answer_queue.qsize() >= 10: |
|
self.save([answer_queue.get() for _ in range(10)]) |
|
|
|
|
|
remaining = [] |
|
while not answer_queue.empty(): |
|
remaining.append(answer_queue.get()) |
|
if remaining: |
|
self.save(remaining) |
|
|
|
if __name__ == '__main__': |
|
questions_path = './tools/L1_XTuner_code/Q_list.txt' |
|
save_path = './data/train_basic.jsonl' |
|
start_time = time.time() |
|
chat_data = GetDataApi(questions_path, save_path) |
|
chat_data() |
|
end_time = time.time() |
|
print('Done') |
|
print(f'Time used: {end_time - start_time:.2f} seconds') |
|
|