File size: 4,600 Bytes
9f23e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import numpy as np
# # from transformers import AutoTokenizer, AutoModelForQuestionAnswering


class QuestionAnswer:

    def __init__(self, data, model, tokenizer, torch_device):

        self.max_length = 384
        self.doc_stride = 128

        self.tokenizer = tokenizer
        self.model = model
        self.data = data
        self.torch_device = torch_device
        
        self.output = None
        self.features = None
        self.results = None

    def get_output_from_model(self):
        # data = {'question': question, 'context': context}

        with torch.no_grad():
            tokenized_data = self.tokenizer(
                self.data['question'],
                self.data['context'],
                truncation='only_second',
                max_length=self.max_length,
                stride=self.doc_stride,
                return_overflowing_tokens=True,
                return_offsets_mapping=True,
                padding='max_length',
                return_tensors='pt'
            ).to(self.torch_device)

            output = self.model(tokenized_data['input_ids'], tokenized_data['attention_mask'])
        
        return output

        # print(output.keys())
        # print(output['start_logits'].shape)
        # print(output['end_logits'].shape)
        # print(tokenized_data.keys())
    
    def prepare_features(self, example):
        tokenized_example = self.tokenizer(
            example['question'],
            example['context'],
            truncation='only_second',
            max_length=self.max_length,
            stride=self.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding='max_length',
        )

        # sample_mapping = tokenized_example.pop("overflow_to_sample_mapping")
        
        for i in range(len(tokenized_example['input_ids'])):
            sequence_ids = tokenized_example.sequence_ids(i)
            # print(sequence_ids)
            context_index = 1

            # sample_index = sample_mapping[i]

            tokenized_example["offset_mapping"][i] = [
                (o if sequence_ids[k] == context_index else None)
                for k, o in enumerate(tokenized_example["offset_mapping"][i])
            ]

        return tokenized_example

    def postprocess_qa_predictions(self, data, features, raw_predictions, top_n_answers=5, max_answer_length=30):
        all_start_logits, all_end_logits = raw_predictions.start_logits, raw_predictions.end_logits

        # print(all_start_logits)

        results = []
        context = data['context']

        # print(len(features['input_ids']))
        for i in range(len(features['input_ids'])):
            start_logits = all_start_logits[i].cpu().numpy()
            end_logits = all_end_logits[i].cpu().numpy()

            # print(start_logits)

            offset_mapping = features['offset_mapping'][i]
            
            start_indices = np.argsort(start_logits)[-1: -top_n_answers - 1: -1].tolist()
            end_indices = np.argsort(end_logits)[-1: -top_n_answers - 1: -1].tolist()

            for start_index in start_indices:
                for end_index in end_indices:
                    if (
                        start_index >= len(offset_mapping) 
                        or end_index >= len(offset_mapping) 
                        or offset_mapping[start_index] is None 
                        or offset_mapping[end_index] is None
                        or end_index < start_index
                        or end_index - start_index + 1 > max_answer_length
                    ):
                        continue

                    start_char = offset_mapping[start_index][0]
                    end_char = offset_mapping[end_index][1]

                    # print(start_logits[start_index])
                    # print(end_logits[end_index])
                    score = start_logits[start_index] + end_logits[end_index]
                    results.append(
                        {
                            'score': float('%.*g' % (3, score)),
                            'text': context[start_char: end_char]
                        }
                    )
        
        results = sorted(results, key=lambda x: x["score"], reverse=True)[:top_n_answers]
        return results
    

    def get_results(self):
        self.output = self.get_output_from_model()
        self.features = self.prepare_features(self.data)
        self.results = self.postprocess_qa_predictions(self.data, self.features, self.output)

        return self.results