File size: 3,283 Bytes
9f23e0b
 
4e8a231
 
 
9f23e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import numpy as np

import nltk
nltk.download('stopwords')

from nltk.corpus import stopwords
from nltk.tokenize import RegexpTokenizer

class QueryProcessor:

    def __init__(self, question, section_texts, N, avg_doc_len):
        self.section_texts = section_texts
        self.N = N
        self.avg_doc_len = avg_doc_len
        # self.bm25_scores = {}
        
        self.query_items = self.set_query(question)
        self.section_document_idx = None

    def set_query(self, question):
        punct_regex = RegexpTokenizer(r'\w+')

        return [q for q in punct_regex.tokenize(question.lower()) if q not in stopwords.words('english')]

    def get_query(self):
        return self.query_items

    def bm25(self, word, paragraph, k=1.2, b=0.75):
        # frequency of word (word) in doc (paragraph)
        freq = paragraph.split().count(word)
        
        # term frequency
        tf = (freq * (k+1)) / (freq + k * (1 - b + b * len(paragraph.split()) / self.avg_doc_len))

        # number of docs that contain the word
        N_q = sum([1 for _, docs in self.section_texts.items() for doc in docs if word in doc.split()])

        # inverse document frequency
        idf = np.log(((self.N - N_q + 0.5) / (N_q + 0.5)) + 1)

        return round(tf*idf, 4)

    def get_bm25_scores(self):
        bm25_scores = {}

        for query in self.query_items:
            bm25_scores[query] = {}
            for section, docs in self.section_texts.items():
                bm25_scores[query][section] = {}
                for doc_index in range(len(docs)):
                    score = self.bm25(query, docs[doc_index])
                    if score > 0.0:
                        bm25_scores[query][section][doc_index] = score
                
                if len(bm25_scores[query][section]) <= 0:
                    del bm25_scores[query][section]
        
        return bm25_scores

    def filter_bad_documents(self, bm25_scores):
        section_document_idx = {}

        for sec_docs in bm25_scores.values():
            for sec, doc_scores in sec_docs.items():
                if sec not in section_document_idx:
                    section_document_idx[sec] = []
                for doc_idx, score in doc_scores.items():
                    if score > 0.5 and doc_idx not in section_document_idx[sec]:
                        section_document_idx[sec].append(doc_idx)
            
                if len(section_document_idx[sec]) <= 0:
                    del section_document_idx[sec]
        
        return section_document_idx


    def get_context(self):
        bm25_scores = self.get_bm25_scores()
        self.section_document_idx = self.filter_bad_documents(bm25_scores)

        # print(bm25_scores)
        context = ' '.join([self.section_texts[section][d_id] for section, doc_ids in self.section_document_idx.items() for d_id in doc_ids])

        # print(section_document_idx)

        return context

    def match_section_with_answer_text(self, text):
    # print(text)
        sections = []
        for sec, doc_ids in self.section_document_idx.items():
            for d_id in doc_ids:
                if self.section_texts[sec][d_id].find(text) > -1:
                    sections.append(sec)
        
        return sections