Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from transformers import CLIPModel | |
from peft import LoraConfig, get_peft_model | |
class MLP(nn.Module): | |
def __init__(self, input_dim=768, hidden_dim1=512, hidden_dim2=256, output_dim=8,dropout_rate=0.5): | |
super(MLP, self).__init__() | |
self.fc1 = nn.Linear(input_dim, hidden_dim1) | |
self.relu1 = nn.ReLU() | |
self.dropout = nn.Dropout(dropout_rate) | |
self.fc2 = nn.Linear(hidden_dim1, hidden_dim2) | |
self.relu2 = nn.ReLU() | |
self.fc3 = nn.Linear(hidden_dim2, output_dim) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.relu1(x) | |
x = self.dropout(x) | |
x = self.fc2(x) | |
x = self.relu2(x) | |
x = self.dropout(x) | |
x = self.fc3(x) | |
return x | |
class clip_lora_model(nn.Module): | |
def __init__(self, input_dim=768, hidden_dim1=512, hidden_dim2=256, output_dim=8,dropout_rate=0.5,r=16,lora_alpha=8): | |
super(clip_lora_model, self).__init__() | |
self.output_dim=output_dim | |
self.mlp = MLP(input_dim, hidden_dim1, hidden_dim2, output_dim,dropout_rate) | |
model_name = 'openai/clip-vit-large-patch14' | |
model = CLIPModel.from_pretrained(model_name) | |
self.proj = model.visual_projection | |
for param in self.proj.parameters(): | |
param.requires_grad = False | |
encoder = model.vision_model | |
target_modules = ["k_proj", "v_proj", "q_proj"] | |
config = LoraConfig( | |
r=int(r), | |
lora_alpha=lora_alpha, | |
target_modules=target_modules, | |
lora_dropout=0.1, | |
bias="none", | |
) | |
self.model = get_peft_model(encoder, config) | |
def forward(self, x): | |
model_outputs = self.model(x) | |
image_embeds = model_outputs[1] | |
model_outputs = self.proj(image_embeds) | |
outputs = self.mlp(model_outputs) | |
return outputs | |