Amitz244 commited on
Commit
cfe19c7
·
verified ·
1 Parent(s): fad567e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -13
app.py CHANGED
@@ -91,17 +91,6 @@ example_images = [
91
  "https://apnapestcontrol.ca/wp-content/uploads/2019/02/9.jpg",
92
  "https://images.pexels.com/photos/1107717/pexels-photo-1107717.jpeg?cs=srgb&dl=pexels-fotios-photos-1107717.jpg&fm=jpg"
93
  ]
94
- css = """
95
- .gradio-container {
96
- display: flex;
97
- flex-direction: column;
98
- align-items: center;
99
- justify-content: center;
100
- }
101
- .gradio-title, .gradio-description {
102
- text-align: center;
103
- }
104
- """
105
 
106
  # Create Gradio interface with custom CSS
107
  iface = gr.Interface(
@@ -110,8 +99,7 @@ iface = gr.Interface(
110
  outputs=[gr.Textbox(label="Emotion"), gr.Textbox(label="Memorability Score")],
111
  title="PerceptCLIP",
112
  description="This is an official demo of PerceptCLIP from the paper: [Don’t Judge Before You CLIP: A Unified Approach for Perceptual Tasks](https://arxiv.org/pdf/2503.13260). For each specific task, we fine-tune CLIP with LoRA and an MLP head. Our models achieve state-of-the-art performance. \nThis demo shows results from three models, one for each task - visual emotion analysis, memorability prediction, and image quality assessment.",
113
- examples=example_images,
114
- css=css # Inject the custom CSS
115
  )
116
 
117
 
 
91
  "https://apnapestcontrol.ca/wp-content/uploads/2019/02/9.jpg",
92
  "https://images.pexels.com/photos/1107717/pexels-photo-1107717.jpeg?cs=srgb&dl=pexels-fotios-photos-1107717.jpg&fm=jpg"
93
  ]
 
 
 
 
 
 
 
 
 
 
 
94
 
95
  # Create Gradio interface with custom CSS
96
  iface = gr.Interface(
 
99
  outputs=[gr.Textbox(label="Emotion"), gr.Textbox(label="Memorability Score")],
100
  title="PerceptCLIP",
101
  description="This is an official demo of PerceptCLIP from the paper: [Don’t Judge Before You CLIP: A Unified Approach for Perceptual Tasks](https://arxiv.org/pdf/2503.13260). For each specific task, we fine-tune CLIP with LoRA and an MLP head. Our models achieve state-of-the-art performance. \nThis demo shows results from three models, one for each task - visual emotion analysis, memorability prediction, and image quality assessment.",
102
+ examples=example_images
 
103
  )
104
 
105