Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from PIL import Image
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
import importlib.util
|
6 |
+
from torchvision import transforms
|
7 |
+
|
8 |
+
# Load model
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
|
11 |
+
# Download model code
|
12 |
+
class_path = hf_hub_download(repo_id="PerceptCLIP/PerceptCLIP_Emotions", filename="modeling.py")
|
13 |
+
spec = importlib.util.spec_from_file_location("modeling", class_path)
|
14 |
+
modeling = importlib.util.module_from_spec(spec)
|
15 |
+
spec.loader.exec_module(modeling)
|
16 |
+
|
17 |
+
# Initialize the model
|
18 |
+
from modeling import clip_lora_model
|
19 |
+
model = clip_lora_model().to(device)
|
20 |
+
|
21 |
+
# Load pretrained weights
|
22 |
+
model_path = hf_hub_download(repo_id="PerceptCLIP/PerceptCLIP_Emotions", filename="perceptCLIP_Emotions.pth")
|
23 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
24 |
+
model.eval()
|
25 |
+
|
26 |
+
# Emotion label mapping
|
27 |
+
idx2label = {
|
28 |
+
0: "amusement",
|
29 |
+
1: "awe",
|
30 |
+
2: "contentment",
|
31 |
+
3: "excitement",
|
32 |
+
4: "anger",
|
33 |
+
5: "disgust",
|
34 |
+
6: "fear",
|
35 |
+
7: "sadness"
|
36 |
+
}
|
37 |
+
|
38 |
+
# Emoji mapping
|
39 |
+
emotion_emoji = {
|
40 |
+
"amusement": "π",
|
41 |
+
"awe": "π²",
|
42 |
+
"contentment": "π",
|
43 |
+
"excitement": "π",
|
44 |
+
"anger": "π ",
|
45 |
+
"disgust": "π€’",
|
46 |
+
"fear": "π±",
|
47 |
+
"sadness": "π"
|
48 |
+
}
|
49 |
+
|
50 |
+
# Image preprocessing
|
51 |
+
def emo_preprocess(image):
|
52 |
+
transform = transforms.Compose([
|
53 |
+
transforms.Resize(224),
|
54 |
+
transforms.CenterCrop(224),
|
55 |
+
transforms.ToTensor(),
|
56 |
+
transforms.Normalize(mean=(0.4814, 0.4578, 0.4082), std=(0.2686, 0.2613, 0.2758)),
|
57 |
+
])
|
58 |
+
return transform(image).unsqueeze(0).to(device)
|
59 |
+
|
60 |
+
# Inference function
|
61 |
+
def predict_emotion(image):
|
62 |
+
image = Image.open(image).convert("RGB")
|
63 |
+
image = emo_preprocess(image)
|
64 |
+
|
65 |
+
with torch.no_grad():
|
66 |
+
outputs = model(image)
|
67 |
+
predicted = outputs.argmax(1).item()
|
68 |
+
|
69 |
+
emotion = idx2label[predicted]
|
70 |
+
emoji = emotion_emoji.get(emotion, "β") # Default to "?" if no emoji found
|
71 |
+
return f"{emotion} {emoji}"
|
72 |
+
|
73 |
+
# Create Gradio interface
|
74 |
+
iface = gr.Interface(
|
75 |
+
fn=predict_emotion,
|
76 |
+
inputs=gr.inputs.Image(type="pil", label="Upload an Image"),
|
77 |
+
outputs=gr.outputs.Textbox(label="Emotion + Emoji"),
|
78 |
+
title="PerceptCLIP-Emotions",
|
79 |
+
description="This model predicts the emotion evoked by an image and returns the corresponding emoji along with the emotion name."
|
80 |
+
)
|
81 |
+
|
82 |
+
if __name__ == "__main__":
|
83 |
+
iface.launch()
|