File size: 2,450 Bytes
20fefb1
 
 
e474d15
20fefb1
b232c7a
20fefb1
 
92d45bc
 
 
d312778
 
 
 
 
 
 
 
086dd5a
2754cd5
50f573d
2754cd5
92d45bc
2754cd5
 
92d45bc
2754cd5
 
 
 
 
 
 
20fefb1
 
 
 
 
 
39a4d43
 
 
 
 
20fefb1
50f573d
20fefb1
39a4d43
 
20fefb1
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import streamlit as st
from transformers import pipeline

@st.cache_resource
def load_model():
    return pipeline("text-generation", model="PeterBrendan/pbjs_gpt2")

def main():
    if "generated_widget_id" not in st.session_state:
        st.session_state["generated_widget_id"] = None

    st.title("Prebid Config Generator")
    st.write("Enter a Prebid config setting, such as 'bidderTimeout', and get a generated Prebid config output starting from that setting onward. Using '{' will generate a Prebid config from the beginning.")

    st.subheader("Intended Uses")
    st.write("This model is designed to assist publishers in understanding and exploring how other publishers configure their Prebid settings. It can serve as a valuable reference to gain insights into common configurations, best practices, and different approaches used by publishers across various domains.")
    st.write("To learn more about the model, visit the [pbjs_gpt2 model page](https://huggingface.co/PeterBrendan/pbjs_gpt2). You can also refer to the [official Prebid Documentation on pbjs.setConfig](https://docs.prebid.org/dev-docs/publisher-api-reference/setConfig.html) for more information.")

    st.write("Note: The model may take some time to generate the output.")

    # Default prompts
    default_prompts = ["{", "bidderTimeout", "bidderSequence", "Usebidcache", "customPriceBucket"]

    # Create a selectbox for default prompts
    default_prompt = st.selectbox("Choose a default prompt:", default_prompts)

    # Create a text input field for custom prompt
    custom_prompt = st.text_input("Enter a custom prompt:", "")

    # Check if a default prompt is selected
    if default_prompt:
        user_input = default_prompt
    else:
        user_input = custom_prompt

    # Check if the user input is empty
    if user_input:
        # Load the Hugging Face model
        generator = load_model()

        # Display 'Generating Output' message
        output_placeholder = st.empty()
        with output_placeholder:
            st.write("Generating Output...")

        # Generate text based on user input
        generated_text = generator(user_input, max_length=700, num_return_sequences=1)[0]["generated_text"]

        # Clear 'Generating Output' message and display the generated text
        output_placeholder.empty()
        st.write("Generated Text:")
        st.write(generated_text)

# Run the app
if __name__ == "__main__":
    main()